IDEAS home Printed from https://ideas.repec.org/p/wat/wpaper/1016.html

Regime Switching in Stochastic Models of Commodity Prices: An Application to an Optimal Tree Harvesting Problem

Author

Listed:
  • Shan chen

    (Department of Economics, University of Waterloo)

  • Margaret Insley

    (Department of Economics, University of Waterloo)

Abstract

This paper investigates whether a regime switching model of stochastic lumber prices is better for the analysis of optimal harvesting problems in forestry than a more traditional single regime model. Prices of lumber derivatives are used to calibrate a regime switching model, with each of two regimes characterized by a different mean reverting process. A single regime, mean reverting process is also calibrated. The value of a representative stand of trees and optimal harvesting prices are determined by specifying a Hamilton-Jacobi-Bellman Variational Inequality, which is solved for both pricing models using a fully implicit finite difference approach. The regime switching model is found to more closely match the behaviour of futures prices than the single regime model. In addition, analysis of a tree harvesting problem indicates significant differences in terms of land value and optimal harvest thresholds between the regime switching and single regime models.

Suggested Citation

  • Shan chen & Margaret Insley, 2010. "Regime Switching in Stochastic Models of Commodity Prices: An Application to an Optimal Tree Harvesting Problem," Working Papers 1016, University of Waterloo, Department of Economics, revised Jul 2010.
  • Handle: RePEc:wat:wpaper:1016
    as

    Download full text from publisher

    File URL: http://economics.uwaterloo.ca/documents/10-016MI.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Cantegril, Pierre & Paradis, Gregory & LeBel, Luc & Raulier, Frédéric, 2019. "Bioenergy production to improve value-creation potential of strategic forest management plans in mixed-wood forests of Eastern Canada," Applied Energy, Elsevier, vol. 247(C), pages 171-181.
    3. Oscar V. De la Torre-Torres & José Álvarez-García & María de la Cruz del Río-Rama, 2024. "An EM/MCMC Markov-Switching GARCH Behavioral Algorithm for Random-Length Lumber Futures Trading," Mathematics, MDPI, vol. 12(3), pages 1-20, February.
    4. Margaret Insley, 2013. "On the timing of non-renewable resource extraction with regime switching prices: an optimal stochastic control approach," Working Papers 1302, University of Waterloo, Department of Economics, revised Aug 2013.
    5. Chevallier Julien & Goutte Stéphane, 2017. "On the estimation of regime-switching Lévy models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(1), pages 3-29, February.
    6. Pless, Jacquelyn & Arent, Douglas J. & Logan, Jeffrey & Cochran, Jaquelin & Zinaman, Owen, 2016. "Quantifying the value of investing in distributed natural gas and renewable electricity systems as complements: Applications of discounted cash flow and real options analysis with stochastic inputs," Energy Policy, Elsevier, vol. 97(C), pages 378-390.
    7. Insley, Margaret, 2017. "Resource extraction with a carbon tax and regime switching prices: Exercising your options," Energy Economics, Elsevier, vol. 67(C), pages 1-16.
    8. Lee, Sangjun & Zhao, Jinhua, 2021. "Adaptation to climate change: Extreme events versus gradual changes," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    9. Margaret Insley & Yichun Huang, 2020. "The economics of water conservation regulations under uncertainty: An application to Alberta's Lower Athabasca River Region," Working Papers 2003, University of Waterloo, Department of Economics, revised Jul 2020.
    10. René Aïd & Luciano Campi & Liangchen Li & Mike Ludkovski, 2021. "An Impulse-Regime Switching Game Model of Vertical Competition," Dynamic Games and Applications, Springer, vol. 11(4), pages 631-669, December.
    11. Adriana Piazza & Bernardo Pagnoncelli, 2015. "The stochastic Mitra–Wan forestry model: risk neutral and risk averse cases," Journal of Economics, Springer, vol. 115(2), pages 175-194, June.
    12. Mehrdoust, Farshid & Noorani, Idin & Kanniainen, Juho, 2024. "Valuation of option price in commodity markets described by a Markov-switching model: A case study of WTI crude oil market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 228-269.
    13. Martzoukos, Spiros H. & Zacharias, Eleftherios, 2013. "Real option games with R&D and learning spillovers," Omega, Elsevier, vol. 41(2), pages 236-249.
    14. Fan, Kun & Shen, Yang & Siu, Tak Kuen & Wang, Rongming, 2015. "Valuing commodity options and futures options with changing economic conditions," Economic Modelling, Elsevier, vol. 51(C), pages 524-533.
    15. Ballestra, Luca Vincenzo & Pacelli, Graziella, 2013. "Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach," Journal of Economic Dynamics and Control, Elsevier, vol. 37(6), pages 1142-1167.

    More about this item

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wat:wpaper:1016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sherri Anne Arsenault (email available below). General contact details of provider: https://edirc.repec.org/data/dewatca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.