IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v147y2012i2p850-880.html
   My bibliography  Save this article

Sustained positive consumption in a model of stochastic growth: The role of risk aversion

Author

Listed:
  • Mitra, Tapan
  • Roy, Santanu

Abstract

In a stochastic economy, long run consumption and output may not be bounded away from zero even when productivity is arbitrarily high near zero and uncertainty is arbitrarily small. In the one-sector stochastic optimal growth model with i.i.d. production shocks, we characterize the nature of preferences that lead to this phenomenon for a stochastic Cobb–Douglas technology. For the general version of the model, we outline sufficient conditions under which the economy expands its capital stock near zero and long run consumption is bounded away from zero with certainty. Our conditions highlight the important role played by risk aversion for small consumption levels.

Suggested Citation

  • Mitra, Tapan & Roy, Santanu, 2012. "Sustained positive consumption in a model of stochastic growth: The role of risk aversion," Journal of Economic Theory, Elsevier, vol. 147(2), pages 850-880.
  • Handle: RePEc:eee:jetheo:v:147:y:2012:i:2:p:850-880
    DOI: 10.1016/j.jet.2010.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022053111000020
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Danyang Xie, 2000. "Power Risk Aversion Utility Functions," Annals of Economics and Finance, Society for AEF, vol. 1(2), pages 265-282, November.
    2. Mirman, Leonard J. & Zilcha, Itzhak, 1975. "On optimal growth under uncertainty," Journal of Economic Theory, Elsevier, vol. 11(3), pages 329-339, December.
    3. Boylan, Edward S., 1979. "On the avoidance of extinction in one-sector growth models," Journal of Economic Theory, Elsevier, vol. 20(2), pages 276-279, April.
    4. Mirman, Leonard J. & Zilcha, Itzhak, 1977. "Characterizing optimal policies in a one-sector model of economic growth under uncertainty," Journal of Economic Theory, Elsevier, vol. 14(2), pages 389-401, April.
    5. Mitra, Tapan & Roy, Santanu, 2007. "On the possibility of extinction in a class of Markov processes in economics," Journal of Mathematical Economics, Elsevier, vol. 43(7-8), pages 842-854, September.
    6. Mendelssohn, Roy & Sobel, Matthew J., 1980. "Capital accumulation and the optimization of renewable resource models," Journal of Economic Theory, Elsevier, vol. 23(2), pages 243-260, October.
    7. Mirman, Leonard J & Zilcha, Itzhak, 1976. "Unbounded Shadow Prices for Optimal Stochastic Growth Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(1), pages 121-132, February.
    8. Tapan Mitra & Santanu Roy, 2006. "Optimal exploitation of renewable resources under uncertainty and the extinction of species," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(1), pages 1-23, May.
    9. Olson, Lars J. & Roy, Santanu, 2000. "Dynamic Efficiency of Conservation of Renewable Resources under Uncertainty," Journal of Economic Theory, Elsevier, vol. 95(2), pages 186-214, December.
    10. Brock, William A. & Mirman, Leonard J., 1972. "Optimal economic growth and uncertainty: The discounted case," Journal of Economic Theory, Elsevier, vol. 4(3), pages 479-513, June.
    11. Chatterjee, Partha & Shukayev, Malik, 2008. "Note on positive lower bound of capital in the stochastic growth model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(7), pages 2137-2147, July.
    12. Takashi Kamihigashi, 2006. "Almost sure convergence to zero in stochastic growth models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(1), pages 231-237, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adriana Piazza & Bernardo Pagnoncelli, 2015. "The stochastic Mitra–Wan forestry model: risk neutral and risk averse cases," Journal of Economics, Springer, vol. 115(2), pages 175-194, June.
    2. repec:eee:jetheo:v:173:y:2018:i:c:p:334-360 is not listed on IDEAS
    3. Acemoglu, Daron, 2012. "Introduction to economic growth," Journal of Economic Theory, Elsevier, vol. 147(2), pages 545-550.
    4. Herbst, Anthony F. & Wu, Joseph S.K. & Ho, Chi Pui, 2012. "Relationship between risk attitude and economic recovery in optimal growth theory," Global Finance Journal, Elsevier, vol. 23(3), pages 141-150.

    More about this item

    Keywords

    Stochastic growth; Sustained consumption; Extinction; Risk aversion;

    JEL classification:

    • D9 - Microeconomics - - Micro-Based Behavioral Economics
    • E2 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:147:y:2012:i:2:p:850-880. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.