IDEAS home Printed from https://ideas.repec.org/p/cde/cdewps/67.html
   My bibliography  Save this paper

The Stochastic Turnpike Property without Uniformity in Convex Aggregate Growth Models

Author

Listed:
  • Sumit Joshi

    (The George Washington University)

Abstract

An important stochastic turnpike property in optimal growth models asserts that optimal programs of capital accumulation from different initial stocks converge almost surely in a suitable metric. Its proof requires constructing a value-loss process satisfying both uniform boundedness in expectation and sensitivity (in the sense of recording a strictly positive value-loss when the capital stocks being compared diverge). Uniformity assumptions strengthen sensitivity by ensuring that value-loss is independent of time and state of environment in which the divergence occurs. They are imposed either directly on the value-loss process, or indirectly through bounds on the degree of concavity of the felicity or production functions, and are acknowledged as strong restrictions on the model. This paper argues, within the context of a convex aggregate growth model, that uncertainty can obviate the need for uniformity. The multiplicity of states afforded by a stochastic framework permits constructing a value-loss process over an "extended" time-line that is a martingale and, hence, relatively easy to uniformly bound in expectation. Further, if capital stocks diverge by some critical amount in any time and state, then the martingale registers an upcrossing across a band of uniform width on its extended time-line for that state thereby giving uniform value-loss. Probabilistic arguments based on the Martingale Upcrossing theorem and the Borel-Cantelli lemma then clinch the turnpike property.

Suggested Citation

  • Sumit Joshi, 1999. "The Stochastic Turnpike Property without Uniformity in Convex Aggregate Growth Models," Working papers 67, Centre for Development Economics, Delhi School of Economics.
  • Handle: RePEc:cde:cdewps:67
    as

    Download full text from publisher

    File URL: http://www.cdedse.org/pdf/work67.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Chang, Fwu-Ranq, 1982. "A note on the stochastic value loss assumption," Journal of Economic Theory, Elsevier, vol. 26(1), pages 164-170, February.
    3. Tapan Mitra & Yaw Nyarko, 1991. "On the existence of optimal processes in non-stationary environments," Journal of Economics, Springer, vol. 53(3), pages 245-270, October.
    4. Becker, Robert A., 1985. "Capital income taxation and perfect foresight," Journal of Public Economics, Elsevier, vol. 26(2), pages 147-167, March.
    5. Mirman, Leonard J. & Zilcha, Itzhak, 1975. "On optimal growth under uncertainty," Journal of Economic Theory, Elsevier, vol. 11(3), pages 329-339, December.
    6. Christopher Budd & Christopher Harris & John Vickers, 1993. "A Model of the Evolution of Duopoly: Does the Asymmetry between Firms Tend to Increase or Decrease?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 543-573.
    7. Majumdar, Mukul & Zilcha, Itzhak, 1987. "Optimal growth in a stochastic environment: Some sensitivity and turnpike results," Journal of Economic Theory, Elsevier, vol. 43(1), pages 116-133, October.
    8. Mirman, Leonard J. & Zilcha, Itzhak, 1977. "Characterizing optimal policies in a one-sector model of economic growth under uncertainty," Journal of Economic Theory, Elsevier, vol. 14(2), pages 389-401, April.
    9. Joshi, Sumit & Vonortas, Nicholas S., 2001. "Convergence to symmetry in dynamic strategic models of R&D: The undiscounted case," Journal of Economic Dynamics and Control, Elsevier, vol. 25(12), pages 1881-1897, December.
    10. Bewley, Truman, 1982. "An integration of equilibrium theory and turnpike theory," Journal of Mathematical Economics, Elsevier, vol. 10(2-3), pages 233-267, September.
    11. Sorger, Gerhard, 1992. "On the minimum rate of impatience for complicated optimal growth paths," Journal of Economic Theory, Elsevier, vol. 56(1), pages 160-179, February.
    12. Joshi, Sumit, 1997. "Turnpike Theorems in Nonconvex Nonstationary Environments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(1), pages 225-248, February.
    13. Montrucchio, Luigi, 1995. "A New Turnpike Theorem for Discounted Programs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(3), pages 371-382, May.
    14. Majumdar, Mukul & Mitra, Tapan, 1994. "Periodic and Chaotic Programs of Optimal Intertemporal Allocation in an Aggregative Model with Wealth Effects," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(5), pages 649-676, August.
    15. Coleman, Wilbur John, II, 1991. "Equilibrium in a Production Economy with an Income Tax," Econometrica, Econometric Society, vol. 59(4), pages 1091-1104, July.
    16. Brock, W. A. & Majumdar, M., 1978. "Global asymptotic stability results for multisector models of optimal growth under uncertainty when future utilities are discounted," Journal of Economic Theory, Elsevier, vol. 18(2), pages 225-243, August.
    17. Mitra, Tapan, 1998. "On the relationship between discounting and complicated behavior in dynamic optimization models," Journal of Economic Behavior & Organization, Elsevier, vol. 33(3-4), pages 421-434, January.
    18. Lionel W. McKenzie, 2012. "turnpike theory," The New Palgrave Dictionary of Economics,, Palgrave Macmillan.
    19. William A. Brock & Leonard J. Mirman, 2001. "Optimal Economic Growth And Uncertainty: The Discounted Case," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 1, pages 3-37, Edward Elgar Publishing.
    20. Nishimura, Kazuo & Sorger, Gerhard & Yano, Makoto, 1994. "Ergodic Chaos in Optimal Growth Models with Low Discount Rates," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(5), pages 705-717, August.
    21. Marimon, Ramon, 1989. "Stochastic turnpike property and stationary equilibrium," Journal of Economic Theory, Elsevier, vol. 47(2), pages 282-306, April.
    22. McKenzie, Lionel W, 1998. "Turnpikes," American Economic Review, American Economic Association, vol. 88(2), pages 1-14, May.
    23. Brock, William A & Mirman, Leonard J, 1973. "Optimal Economic Growth and Uncertainty: The No Discounting Case," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 560-573, October.
    24. Amir, Rabah, 1997. "A new look at optimal growth under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 22(1), pages 67-86, November.
    25. Boldrin, Michele & Montrucchio, Luigi, 1986. "On the indeterminacy of capital accumulation paths," Journal of Economic Theory, Elsevier, vol. 40(1), pages 26-39, October.
    26. Cesar Guerrero-Luchtenberg, 1998. "- A Turnpike Theoreme For A Family Of Functions," Working Papers. Serie AD 1998-07, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    27. Lucas, Robert Jr., 1988. "On the mechanics of economic development," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 3-42, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vassili Kolokoltsov & Wei Yang, 2012. "Turnpike Theorems for Markov Games," Dynamic Games and Applications, Springer, vol. 2(3), pages 294-312, September.
    2. Lars J. Olson & Santanu Roy, 2006. "Theory of Stochastic Optimal Economic Growth," Springer Books, in: Rose-Anne Dana & Cuong Le Van & Tapan Mitra & Kazuo Nishimura (ed.), Handbook on Optimal Growth 1, chapter 11, pages 297-335, Springer.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lars J. Olson & Santanu Roy, 2006. "Theory of Stochastic Optimal Economic Growth," Springer Books, in: Rose-Anne Dana & Cuong Le Van & Tapan Mitra & Kazuo Nishimura (ed.), Handbook on Optimal Growth 1, chapter 11, pages 297-335, Springer.
    2. Vassili Kolokoltsov & Wei Yang, 2012. "Turnpike Theorems for Markov Games," Dynamic Games and Applications, Springer, vol. 2(3), pages 294-312, September.
    3. Lilia Maliar & Serguei Maliar & John B. Taylor & Inna Tsener, 2020. "A tractable framework for analyzing a class of nonstationary Markov models," Quantitative Economics, Econometric Society, vol. 11(4), pages 1289-1323, November.
    4. Serguei Maliar & John Taylor & Lilia Maliar, 2016. "The Impact of Alternative Transitions to Normalized Monetary Policy," 2016 Meeting Papers 794, Society for Economic Dynamics.
    5. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, April.
    6. Lilia Maliar & Serguei Maliar, 2016. "Ruling Out Multiplicity of Smooth Equilibria in Dynamic Games: A Hyperbolic Discounting Example," Dynamic Games and Applications, Springer, vol. 6(2), pages 243-261, June.
    7. McKenzie, L., 1999. "The First Conferences on the Theory of Economic Growth," RCER Working Papers 459, University of Rochester - Center for Economic Research (RCER).
    8. Joshi, Sumit, 1997. "Martingale analysis of dynamic tax incidence in a nonstationary growth model," Journal of Economic Dynamics and Control, Elsevier, vol. 21(2-3), pages 371-389.
    9. Mirman, Leonard J. & Morand, Olivier F. & Reffett, Kevin L., 2008. "A qualitative approach to Markovian equilibrium in infinite horizon economies with capital," Journal of Economic Theory, Elsevier, vol. 139(1), pages 75-98, March.
    10. Manjira Datta & Leonard Mirman & Olivier Morand & Kevin Reffett, 2002. "Monotone Methods for Markovian Equilibrium in Dynamic Economies," Annals of Operations Research, Springer, vol. 114(1), pages 117-144, August.
    11. Manjira Datta & Leonard Mirman & Olivier F. Morand & Kevin Reffett, 2001. "Monotone Methods for Distorted Economies," Working papers 2001-03, University of Connecticut, Department of Economics.
    12. Stachurski, John, 2002. "Stochastic Optimal Growth with Unbounded Shock," Journal of Economic Theory, Elsevier, vol. 106(1), pages 40-65, September.
    13. Joshi, Sumit, 2007. "Asymmetric outcome in a symmetric dynamic duopoly," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 531-555, February.
    14. Datta, Manjira & Mirman, Leonard J. & Morand, Olivier F. & Reffett, Kevin L., 2005. "Markovian equilibrium in infinite horizon economies with incomplete markets and public policy," Journal of Mathematical Economics, Elsevier, vol. 41(4-5), pages 505-544, August.
    15. Joshi, Sumit, 1995. "Recursive utility and optimal growth under uncertainty," Journal of Mathematical Economics, Elsevier, vol. 24(6), pages 601-617.
    16. Guerrero-Luchtenberg, C.L., 2000. "A uniform neighborhood turnpike theorem and applications," Journal of Mathematical Economics, Elsevier, vol. 34(3), pages 329-357, November.
    17. Joshi, Sumit, 1997. "Existence in undiscounted non-stationary non-convex multisector environments," Journal of Mathematical Economics, Elsevier, vol. 28(1), pages 111-126, August.
    18. Venditti, Alain, 1998. "Indeterminacy and endogenous fluctuations in two-sector growth models with externalities," Journal of Economic Behavior & Organization, Elsevier, vol. 33(3-4), pages 521-542, January.
    19. Brock, William A. & Xepapadeas, Anastasios & Yannacopoulos, Athanasios N., 2014. "Optimal agglomerations in dynamic economics," Journal of Mathematical Economics, Elsevier, vol. 53(C), pages 1-15.
    20. Tapan Mitra & Santanu Roy, 2023. "Stochastic growth, conservation of capital and convergence to a positive steady state," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(1), pages 311-351, July.

    More about this item

    Keywords

    Turnpike; Martingales; Stochastic; Optimal Growth; Uniformity Assumptions;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cde:cdewps:67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sanjeev Sharma (email available below). General contact details of provider: https://edirc.repec.org/data/cdudein.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.