IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v32y2008i7p2137-2147.html
   My bibliography  Save this article

Note on positive lower bound of capital in the stochastic growth model

Author

Listed:
  • Chatterjee, Partha
  • Shukayev, Malik

Abstract

In the context of the classical stochastic growth model, we provide a simple proof that the optimal capital sequence is strictly bounded away from zero whenever the initial capital is strictly positive. We assume that the utility function is bounded below and the shocks affecting output are bounded. However, the proof does not require an interval shock space, thus, admitting both discrete and continuous shocks. Further, we allow for finite marginal product at zero capital. Finally, we use our result to show that any optimal capital sequence converges globally to a unique invariant distribution, which is bounded away from zero.

Suggested Citation

  • Chatterjee, Partha & Shukayev, Malik, 2008. "Note on positive lower bound of capital in the stochastic growth model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(7), pages 2137-2147, July.
  • Handle: RePEc:eee:dyncon:v:32:y:2008:i:7:p:2137-2147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(07)00220-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kamihigashi, Takashi, 2007. "Stochastic optimal growth with bounded or unbounded utility and with bounded or unbounded shocks," Journal of Mathematical Economics, Elsevier, vol. 43(3-4), pages 477-500, April.
    2. Donaldson, John B. & Mehra, Rajnish, 1983. "Stochastic growth with correlated production shocks," Journal of Economic Theory, Elsevier, vol. 29(2), pages 282-312, April.
    3. Hopenhayn, Hugo A & Prescott, Edward C, 1992. "Stochastic Monotonicity and Stationary Distributions for Dynamic Economies," Econometrica, Econometric Society, vol. 60(6), pages 1387-1406, November.
    4. Tapan Mitra & Santanu Roy, 2006. "Optimal exploitation of renewable resources under uncertainty and the extinction of species," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(1), pages 1-23, May.
    5. Mirman, Leonard J. & Zilcha, Itzhak, 1975. "On optimal growth under uncertainty," Journal of Economic Theory, Elsevier, vol. 11(3), pages 329-339, December.
    6. Partha Chatterjee & Malik Shukayev, 2006. "Convergence in a Stochastic Dynamic Heckscher-Ohlin Model," Staff Working Papers 06-23, Bank of Canada.
    7. Stefan baumgärtner, 2004. "The Inada Conditions for Material Resource Inputs Reconsidered," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 29(3), pages 307-322, November.
    8. Brock, William A. & Mirman, Leonard J., 1972. "Optimal economic growth and uncertainty: The discounted case," Journal of Economic Theory, Elsevier, vol. 4(3), pages 479-513, June.
    9. Takashi Kamihigashi, 2006. "Almost sure convergence to zero in stochastic growth models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(1), pages 231-237, September.
    10. Mirman, Leonard J & Zilcha, Itzhak, 1976. "Unbounded Shadow Prices for Optimal Stochastic Growth Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(1), pages 121-132, February.
    11. Rolf Fare & Daniel Primont, 2002. "Inada Conditions and the Law of Diminishing Returns," International Journal of Business and Economics, College of Business and College of Finance, Feng Chia University, Taichung, Taiwan, vol. 1(1), pages 1-8, April.
    12. Olson, Lars J., 1989. "Stochastic growth with irreversible investment," Journal of Economic Theory, Elsevier, vol. 47(1), pages 101-129, February.
    13. Nishimura, Kazuo & Stachurski, John, 2005. "Stability of stochastic optimal growth models: a new approach," Journal of Economic Theory, Elsevier, vol. 122(1), pages 100-118, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chatterjee, Partha & Shukayev, Malik, 2012. "A stochastic dynamic model of trade and growth: Convergence and diversification," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 416-432.
    2. Takashi Kamihigashi & John Stachurski, 2011. "Existence, Stability and Computation of Stationary Distributions: An Extension of the Hopenhayn-Prescott Theorem," Discussion Paper Series DP2011-32, Research Institute for Economics & Business Administration, Kobe University.
    3. Partha Chatterjee & Malik Shukayev, 2006. "Convergence in a Stochastic Dynamic Heckscher-Ohlin Model," Staff Working Papers 06-23, Bank of Canada.
    4. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, January.
    5. Mitra, Tapan & Privileggi, Fabio, 2009. "On Lipschitz continuity of the iterated function system in a stochastic optimal growth model," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 185-198, January.
    6. Mitra, Tapan & Roy, Santanu, 2012. "Sustained positive consumption in a model of stochastic growth: The role of risk aversion," Journal of Economic Theory, Elsevier, vol. 147(2), pages 850-880.
    7. Kam, Timothy & Lee, Junsang, 2014. "On stationary recursive equilibria and nondegenerate state spaces: The Huggett model," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 156-159.
    8. Takashi Kamihigashi & John Stachurski, 2011. "Stability of Stationary Distributions in Monotone Economies," ANU Working Papers in Economics and Econometrics 2011-561, Australian National University, College of Business and Economics, School of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:32:y:2008:i:7:p:2137-2147. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jedc .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.