IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v10y2024i1d10.1186_s40854-024-00614-6.html
   My bibliography  Save this article

An evaluation of the adequacy of Lévy and extreme value tail risk estimates

Author

Listed:
  • Sharif Mozumder

    (University of Dhaka)

  • M. Kabir Hassan

    (University of New Orleans)

  • M. Humayun Kabir

    (Massey University)

Abstract

This study investigates the simplicity and adequacy of tail-based risk measures—value-at-risk (VaR) and expected shortfall (ES)—when applied to tail targeting of the extreme value (EV) model. We implement Lévy–VaR and ES risk measures as full density-based alternatives to the generalized Pareto VaR and the generalized Pareto ES of the tail-targeting EV model. Using data on futures contracts of S&P500, FTSE100, DAX, Hang Seng, and Nikkei 225 during the Global Financial Crisis of 2007–2008, we find that the simplicity of tail-based risk management with a tail-targeting EV model is more attractive. However, the performance of EV risk estimates is not necessarily superior to that of full density-based relatively complex Lévy risk estimates, which may not always give us more robust VaR and ES results, making the model inadequate from a practical perspective. There is randomness in the estimation performances under both approaches for different data ranges and coverage levels. Such mixed results imply that banks, financial institutions, and policymakers should find a way to compromise or trade-off between “simplicity” and user-defined “adequacy”.

Suggested Citation

  • Sharif Mozumder & M. Kabir Hassan & M. Humayun Kabir, 2024. "An evaluation of the adequacy of Lévy and extreme value tail risk estimates," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-26, December.
  • Handle: RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-024-00614-6
    DOI: 10.1186/s40854-024-00614-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-024-00614-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-024-00614-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mike K. P. So & Chi-Ming Wong, 2012. "Estimation of multiple period expected shortfall and median shortfall for risk management," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 739-754, March.
    2. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    3. Jos� Fajardo & Ernesto Mordecki, 2014. "Skewness premium with L�vy processes," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1619-1626, September.
    4. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    5. Sebastian Bayer & Timo Dimitriadis, 2022. "Regression-Based Expected Shortfall Backtesting [Backtesting Expected Shortfall]," Journal of Financial Econometrics, Oxford University Press, vol. 20(3), pages 437-471.
    6. Chavez-Demoulin, V. & Embrechts, P. & Sardy, S., 2014. "Extreme-quantile tracking for financial time series," Journal of Econometrics, Elsevier, vol. 181(1), pages 44-52.
    7. Carmela Quintos & Zhenhong Fan & Peter C. B. Phillips, 2001. "Structural Change Tests in Tail Behaviour and the Asian Crisis," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(3), pages 633-663.
    8. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    9. Sven Otto & Jorg Breitung, 2020. "Backward CUSUM for Testing and Monitoring Structural Change with an Application to COVID-19 Pandemic Data," Papers 2003.02682, arXiv.org, revised Mar 2022.
    10. John Cotter & Kevin Dowd, 2010. "Estimating financial risk measures for futures positions: A nonparametric approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(7), pages 689-703, July.
    11. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    12. Turan G. Bali, 2007. "A Generalized Extreme Value Approach to Financial Risk Measurement," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1613-1649, October.
    13. JosE Fajardo & Ernesto Mordecki, 2006. "Symmetry and duality in Levy markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 219-227.
    14. Federico De Olivera & José Fajardo & Ernesto Mordecki, 2018. "Skewed Lévy Models And Implied Volatility Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-16, March.
    15. Linyin Cheng & Amir AghaKouchak & Eric Gilleland & Richard Katz, 2014. "Non-stationary extreme value analysis in a changing climate," Climatic Change, Springer, vol. 127(2), pages 353-369, November.
    16. Fajardo, José, 2015. "Barrier style contracts under Lévy processes: An alternative approach," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 179-187.
    17. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    18. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    19. Tolikas, Konstantinos & Gettinby, Gareth D., 2009. "Modelling the distribution of the extreme share returns in Singapore," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 254-263, March.
    20. Kim, Young Shin & Rachev, Svetlozar T. & Bianchi, Michele Leonardo & Fabozzi, Frank J., 2008. "Financial market models with Lévy processes and time-varying volatility," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1363-1378, July.
    21. Kabir, M. Humayun & Hassan, M. Kabir, 2005. "The near-collapse of LTCM, US financial stock returns, and the fed," Journal of Banking & Finance, Elsevier, vol. 29(2), pages 441-460, February.
    22. Wong, Hoi Ying & Guan, Peiqiu, 2011. "An FFT-network for Lévy option pricing," Journal of Banking & Finance, Elsevier, vol. 35(4), pages 988-999, April.
    23. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
    24. Nick Pidgeon, 2012. "Climate Change Risk Perception and Communication: Addressing a Critical Moment?," Risk Analysis, John Wiley & Sons, vol. 32(6), pages 951-956, June.
    25. Turan G. Bali, 2007. "A Generalized Extreme Value Approach to Financial Risk Measurement," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1613-1649, October.
    26. Zaichao Du & Juan Carlos Escanciano, 2017. "Backtesting Expected Shortfall: Accounting for Tail Risk," Management Science, INFORMS, vol. 63(4), pages 940-958, April.
    27. Sorwar, Ghulam & Dowd, Kevin, 2010. "Estimating financial risk measures for options," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1982-1992, August.
    28. M. Humayun Kabir & M. Kabir Hassan, 2009. "Russian financial crisis, US financial stock returns and the IMF," Applied Financial Economics, Taylor & Francis Journals, vol. 19(5), pages 409-426.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Candia, Claudio & Herrera, Rodrigo, 2024. "An empirical review of dynamic extreme value models for forecasting value at risk, expected shortfall and expectile," Journal of Empirical Finance, Elsevier, vol. 77(C).
    2. Yannick Hoga & Matei Demetrescu, 2023. "Monitoring Value-at-Risk and Expected Shortfall Forecasts," Management Science, INFORMS, vol. 69(5), pages 2954-2971, May.
    3. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
    4. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
    5. Li, Dan & Clements, Adam & Drovandi, Christopher, 2023. "A Bayesian approach for more reliable tail risk forecasts," Journal of Financial Stability, Elsevier, vol. 64(C).
    6. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    7. Ning Zhang & Yujing Gong & Xiaohan Xue, 2023. "Less disagreement, better forecasts: Adjusted risk measures in the energy futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1332-1372, October.
    8. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    9. Timo Dimitriadis & iaochun Liu & Julie Schnaitmann, 2023. "Encompassing Tests for Value at Risk and Expected Shortfall Multistep Forecasts Based on Inference on the Boundary," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 412-444.
    10. Yun Feng & Weijie Hou & Yuping Song, 2024. "Tail risk forecasting and its application to margin requirements in the commodity futures market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1513-1529, August.
    11. Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2021. "Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 133(C).
    12. Mitra, Sovan, 2017. "Efficient option risk measurement with reduced model risk," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 163-174.
    13. Lyócsa, Štefan & Plíhal, Tomáš & Výrost, Tomáš, 2024. "Forecasting day-ahead expected shortfall on the EUR/USD exchange rate: The (I)relevance of implied volatility," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1275-1301.
    14. Tolikas, Konstantinos, 2014. "Unexpected tails in risk measurement: Some international evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 476-493.
    15. Sullivan Hu'e & Christophe Hurlin & Yang Lu, 2024. "Backtesting Expected Shortfall: Accounting for both duration and severity with bivariate orthogonal polynomials," Papers 2405.02012, arXiv.org, revised May 2024.
    16. Yan Fang & Jian Li & Yinglin Liu & Yunfan Zhao, 2023. "Semiparametric estimation of expected shortfall and its application in finance," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 835-851, July.
    17. d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
    18. Luca Merlo & Lea Petrella & Valentina Raponi, 2021. "Forecasting VaR and ES using a joint quantile regression and implications in portfolio allocation," Papers 2106.06518, arXiv.org.
    19. Taylor, James W., 2022. "Forecasting Value at Risk and expected shortfall using a model with a dynamic omega ratio," Journal of Banking & Finance, Elsevier, vol. 140(C).
    20. Hussain, Saiful Izzuan & Li, Steven, 2018. "The dependence structure between Chinese and other major stock markets using extreme values and copulas," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 421-437.

    More about this item

    Keywords

    Lévy–Kintchine-formula; Value-at-risk; Expected shortfall; Generalized extreme value;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-024-00614-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.