IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v21y2018i02ns0219024918500036.html
   My bibliography  Save this article

Skewed Lévy Models And Implied Volatility Skew

Author

Listed:
  • FEDERICO DE OLIVERA

    (Departamento de Matemática, Centro Regional de Profesores del Sur, Consejo de Formación en Educación, Atlántida, Uruguay)

  • JOSÉ FAJARDO

    (Brazilian School of Public and Business Administration, Getulio Vargas Foundation, Rio de Janeiro, Brazil)

  • ERNESTO MORDECKI

    (Centro de Matemática, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay)

Abstract

We introduce skewed Lévy models, characterized by a symmetric jump measure multiplied by a damping exponential factor. These models exhibit a clear implied volatility pattern, where the damping parameter controls the implied volatility curve’s skew, resulting in a measure of the model’s skewness. We show that the variation of this parameter produces the typical smirk observed in implied volatility curves. Some theoretical facts supporting these findings are proved.

Suggested Citation

  • Federico De Olivera & José Fajardo & Ernesto Mordecki, 2018. "Skewed Lévy Models And Implied Volatility Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-16, March.
  • Handle: RePEc:wsi:ijtafx:v:21:y:2018:i:02:n:s0219024918500036
    DOI: 10.1142/S0219024918500036
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024918500036
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024918500036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    2. Jos� Fajardo & Ernesto Mordecki, 2014. "Skewness premium with L�vy processes," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1619-1626, September.
    3. JosE Fajardo & Ernesto Mordecki, 2006. "Symmetry and duality in Levy markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 219-227.
    4. Stefan Gerhold & I. Cetin Gulum & Arpad Pinter, 2013. "Small-maturity asymptotics for the at-the-money implied volatility slope in L\'evy models," Papers 1310.3061, arXiv.org, revised May 2016.
    5. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    6. Stefan Gerhold & I. Cetin Gülüm & Arpad Pinter, 2016. "Small-Maturity Asymptotics for the At-The-Money Implied Volatility Slope in Lévy Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(2), pages 135-157, March.
    7. Rama Cont & Ekaterina Voltchkova, 2005. "Integro-differential equations for option prices in exponential Lévy models," Finance and Stochastics, Springer, vol. 9(3), pages 299-325, July.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Fajardo, 2017. "A new factor to explain implied volatility smirk," Applied Economics, Taylor & Francis Journals, vol. 49(40), pages 4026-4034, August.
    2. Jean-Philippe Aguilar, 2021. "The value of power-related options under spectrally negative Lévy processes," Review of Derivatives Research, Springer, vol. 24(2), pages 173-196, July.
    3. Jean-Philippe Aguilar, 2019. "The value of power-related options under spectrally negative L\'evy processes," Papers 1910.07971, arXiv.org, revised Jan 2021.
    4. José Fajardo, 2014. "Symmetry and Bates’ rule in Ornstein–Uhlenbeck stochastic volatility models," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 319-327, October.
    5. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    6. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    7. Wenting Chen & Kai Du & Xinzi Qiu, 2017. "Analytic properties of American option prices under a modified Black-Scholes equation with spatial fractional derivatives," Papers 1701.01515, arXiv.org.
    8. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2020. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Papers 2006.15312, arXiv.org, revised May 2022.
    9. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    10. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
    11. Xin Cai & Yihong Wang, 2024. "A Novel Fourth-Order Finite Difference Scheme for European Option Pricing in the Time-Fractional Black–Scholes Model," Mathematics, MDPI, vol. 12(21), pages 1-23, October.
    12. Feng, Chengxiao & Tan, Jie & Jiang, Zhenyu & Chen, Shuang, 2020. "A generalized European option pricing model with risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    13. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    14. Edwards, Craig, 2006. "Integrating delta: An intuitive single-integral approach to pricing European options on diverse stochastic processes," Economics Letters, Elsevier, vol. 92(1), pages 20-25, July.
    15. Beber, Alessandro & Brandt, Michael W., 2006. "The effect of macroeconomic news on beliefs and preferences: Evidence from the options market," Journal of Monetary Economics, Elsevier, vol. 53(8), pages 1997-2039, November.
    16. Fajardo, José, 2016. "Power Style Contracts Under Asymmetric Lévy Processes," MPRA Paper 71813, University Library of Munich, Germany.
    17. F. Cacace & A. Germani & M. Papi, 2019. "On parameter estimation of Heston’s stochastic volatility model: a polynomial filtering method," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 503-525, December.
    18. Ross A. Maller & David H. Solomon & Alex Szimayer, 2006. "A Multinomial Approximation For American Option Prices In Lévy Process Models," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 613-633, October.
    19. Indranil Sengupta, 2016. "Generalized Bn–S Stochastic Volatility Model For Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-23, March.
    20. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:21:y:2018:i:02:n:s0219024918500036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.