IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Financial market models with Lévy processes and time-varying volatility

Listed author(s):
  • Kim, Young Shin
  • Rachev, Svetlozar T.
  • Bianchi, Michele Leonardo
  • Fabozzi, Frank J.

Asset management and pricing models require the proper modeling of the return distribution of financial assets. While the return distribution used in the traditional theories of asset pricing and portfolio selection is the normal distribution, numerous studies that have investigated the empirical behavior of asset returns in financial markets throughout the world reject the hypothesis that asset return distributions are normally distribution. Alternative models for describing return distributions have been proposed since the 1960s, with the strongest empirical and theoretical support being provided for the family of stable distributions (with the normal distribution being a special case of this distribution). Since the turn of the century, specific forms of the stable distribution have been proposed and tested that better fit the observed behavior of historical return distributions. More specifically, subclasses of the tempered stable distribution have been proposed. In this paper, we propose one such subclass of the tempered stable distribution which we refer to as the "KR distribution". We empirically test this distribution as well as two other recently proposed subclasses of the tempered stable distribution: the Carr-Geman-Madan-Yor (CGMY) distribution and the modified tempered stable (MTS) distribution. The advantage of the KR distribution over the other two distributions is that it has more flexible tail parameters. For these three subclasses of the tempered stable distribution, which are infinitely divisible and have exponential moments for some neighborhood of zero, we generate the exponential Lévy market models induced from them. We then construct a new GARCH model with the infinitely divisible distributed innovation and three subclasses of that GARCH model that incorporates three observed properties of asset returns: volatility clustering, fat tails, and skewness. We formulate the algorithm to find the risk-neutral return processes for those GARCH models using the "change of measure" for the tempered stable distributions. To compare the performance of those exponential Lévy models and the GARCH models, we report the results of the parameters estimated for the S&P 500 index and investigate the out-of-sample forecasting performance for those GARCH models for the S&P 500 option prices.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Banking & Finance.

Volume (Year): 32 (2008)
Issue (Month): 7 (July)
Pages: 1363-1378

in new window

Handle: RePEc:eee:jbfina:v:32:y:2008:i:7:p:1363-1378
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Gerber, Hans U. & Shiu, Elias S. W., 1996. "Actuarial bridges to dynamic hedging and option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 18(3), pages 183-218, November.
  2. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71, pages 421-421.
  3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
  4. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
  5. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:32:y:2008:i:7:p:1363-1378. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.