IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v32y2008i2p311-325.html
   My bibliography  Save this article

Factorization of European and American option prices under complete and incomplete markets

Author

Listed:
  • Ibáñez, Alfredo

Abstract

In a standard option-pricing model, with continuous-trading and diffusion processes, this paper shows that the price of one European-style option can be factorized into two intuitive components: One robust, X0, which is priced by arbitrage, and a second, [Pi]0, which depends on a risk orthogonal to the traded securities. This result implies the following: (1) In an incomplete market, these parts represent the price of a hedging portfolio, which is unique, and a premium, which depends only on the risk premiums associated with the residual risk, respectively. (2) In a complete market, it allows factoring the contribution of the different sources of risk to the final option price. For example, in a stochastic volatility model, we can quantify the impact on the option price of volatility risk relative to market risk, [Pi]0 and X0, respectively. Hence, certain misspricings in option markets can be directly related to the premium, [Pi]0. (3) Moreover, these results extend to American securities, which have a third component - an additional early-exercise premium.

Suggested Citation

  • Ibáñez, Alfredo, 2008. "Factorization of European and American option prices under complete and incomplete markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 311-325, February.
  • Handle: RePEc:eee:jbfina:v:32:y:2008:i:2:p:311-325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(07)00185-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ross, Stephen A, 1978. "A Simple Approach to the Valuation of Risky Streams," The Journal of Business, University of Chicago Press, vol. 51(3), pages 453-475, July.
    2. David Heath & Eckhard Platen & Martin Schweizer, 2001. "A Comparison of Two Quadratic Approaches to Hedging in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 385-413.
    3. Merton, Robert C, 1998. "Applications of Option-Pricing Theory: Twenty-Five Years Later," American Economic Review, American Economic Association, vol. 88(3), pages 323-349, June.
    4. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    5. Detemple, Jerome & Sundaresan, Suresh, 1999. "Nontraded Asset Valuation with Portfolio Constraints: A Binomial Approach," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 835-872.
    6. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    7. T. Clifton Green & Stephen Figlewski, 1999. "Market Risk and Model Risk for a Financial Institution Writing Options," Journal of Finance, American Finance Association, vol. 54(4), pages 1465-1499, August.
    8. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    9. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    10. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    11. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Peter Carr & Robert Jarrow & Ravi Myneni, 2008. "Alternative Characterizations Of American Put Options," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 5, pages 85-103 World Scientific Publishing Co. Pte. Ltd..
    14. Tomas Björk & Irina Slinko, 2006. "Towards a General Theory of Good-Deal Bounds," Review of Finance, European Finance Association, vol. 10(2), pages 221-260.
    15. Naik, Vasanttilak & Lee, Moon, 1990. "General Equilibrium Pricing of Options on the Market Portfolio with Discontinuous Returns," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 493-521.
    16. Alfredo Ibáñez, 2003. "Robust Pricing of the American Put Option: A Note on Richardson Extrapolation and the Early Exercise Premium," Management Science, INFORMS, vol. 49(9), pages 1210-1228, September.
    17. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    18. Jefferson Duarte, 2004. "Evaluating an Alternative Risk Preference in Affine Term Structure Models," Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 379-404.
    19. Ibáñez, Alfredo, 2005. "Option-pricing in incomplete markets: the hedging portfolio plus a risk premium-based recursive approach," DEE - Working Papers. Business Economics. WB wb058121, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung, San-Lin & Hung, Mao-Wei & Wang, Jr-Yan, 2010. "Tight bounds on American option prices," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 77-89, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:32:y:2008:i:2:p:311-325. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jbf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.