IDEAS home Printed from https://ideas.repec.org/b/uts/finphd/3-2015.html
   My bibliography  Save this book

RAROC-Based Contingent Claim Valuation

Author

Listed:
  • Wayne King Ming Chan

Abstract

The present dissertation investigates the valuation of a contingent claim based on the criterion RAROC, an abbreviation of Risk-Adjusted Return on Capital. RAROC is defined as the ratio of expected return to risk, and may therefore be regarded as a performance measure. RAROC-based pricing theory can indeed be considered as a subclass of the broader ‘good-deal’ pricing theory, developed by Bernardo and Ledoit (2000) and Cochrane and Sa´a-Requejo (2000). By fixing some specific target value of RAROC, a RAROC-based good-deal price for a contingent claim is determined as follows: upon charging the counterparty with this price and using available funds, we are able to construct a hedging portfolio such that the maximum achievable RAROC of our hedged position meets the target RAROC. As a first step, we consider the standard Black-Scholes model, but allow only static hedging strategies. Assuming that the contingent claim in question is a call option, we examine the behavior of maximum value of RAROC as a function of initial call price, as well as the corresponding optimal static hedging strategy. In this analysis we consider two specifications for the risk component of RAROC, namely Value-at-Risk and Expected Shortfall. Subsequently, we allow continuous-time trading strategies, while remaining in the Black-Scholes framework. In this case we suppose that the initial price of the call option is limited to be below the Black-Scholes price. Perfect hedging is thus impossible, and the position must contain some residual risk. For ease of analysis, we restrict our attention to a specific class of hedging strategies and examine the maximum RAROC for each strategy in this class. In the interest of tractability, the version of RAROC adopted risk is measured simply as expected loss. While the previous approach only permits us to examine the constrained maximum RAROC over a specific class of hedging strategies, we would like to employ a more general method in order to study the global maximum RAROC over all hedging strategies. To do so, we introduce the notion of dynamic RAROC-based good-deal prices. In particular, with reference to the dynamic good-deal pricing theory of Becherer (2009), such prices are required to satisfy certain dynamic conditions, so that inconsistent decision-making between different times can be avoided. This task is accomplished by constructing prices that behave like time-consistent dynamic coherent risk measures. As soon as the construction process is finished, we set up a discrete time incomplete market, and demonstrate how to determine the dynamic RAROC-based good-deal price for a call option. Furthermore, by following Becherer (2009), we derive the dynamics of RAROC-based good-deal prices as solutions for discrete-time backward stochastic difference equations. Finally, we introduce RAROC-based good-deal hedging strategies, and examine their representation in terms of discrete-time backward stochastic difference equations.

Suggested Citation

  • Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2015, January-A.
  • Handle: RePEc:uts:finphd:3-2015
    as

    Download full text from publisher

    File URL: https://opus.lib.uts.edu.au/bitstream/10453/34472/2/02whole.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Britten-Jones & Anthony Neuberger, 1996. "Arbitrage pricing with incomplete markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 347-363.
    2. John H. Cochrane & Jesus Saa-Requejo, 2000. "Beyond Arbitrage: Good-Deal Asset Price Bounds in Incomplete Markets," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 79-119, February.
    3. Alexander Schied, 2004. "On the Neyman-Pearson problem for law-invariant risk measures and robust utility functionals," Papers math/0407127, arXiv.org.
    4. Cheridito, Patrick & Stadje, Mitja, 2009. "Time-inconsistency of VaR and time-consistent alternatives," Finance Research Letters, Elsevier, vol. 6(1), pages 40-46, March.
    5. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    6. Patrick Cheridito & Michael Kupper, 2011. "Composition Of Time-Consistent Dynamic Monetary Risk Measures In Discrete Time," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 137-162.
    7. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    8. Harrison, J. Michael & Pliska, Stanley R., 1983. "A stochastic calculus model of continuous trading: Complete markets," Stochastic Processes and their Applications, Elsevier, vol. 15(3), pages 313-316, August.
    9. Bertsimas, Dimitris & Lauprete, Geoffrey J. & Samarov, Alexander, 2004. "Shortfall as a risk measure: properties, optimization and applications," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1353-1381, April.
    10. Cohen, Samuel N. & Elliott, Robert J., 2010. "A general theory of finite state Backward Stochastic Difference Equations," Stochastic Processes and their Applications, Elsevier, vol. 120(4), pages 442-466, April.
    11. Mierzejewski, Fernando, 2008. "The Allocation of Economic Capital in Opaque Financial Conglomerates," MPRA Paper 9432, University Library of Munich, Germany.
    12. Birgit Rudloff, 2009. "Coherent hedging in incomplete markets," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 197-206.
    13. Eckhard Platen, 2006. "A Benchmark Approach To Finance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 131-151, January.
    14. Hans FÃllmer & Peter Leukert, 2000. "Efficient hedging: Cost versus shortfall risk," Finance and Stochastics, Springer, vol. 4(2), pages 117-146.
    15. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and Dynamic Convex Risk Measures," SFB 649 Discussion Papers SFB649DP2005-006, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    16. Mark Rubinstein, 1976. "The Valuation of Uncertain Income Streams and the Pricing of Options," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 407-425, Autumn.
    17. Mingxin Xu, 2006. "Risk measure pricing and hedging in incomplete markets," Annals of Finance, Springer, vol. 2(1), pages 51-71, January.
    18. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    19. David Heath & Eckhard Platen & Martin Schweizer, 2001. "A Comparison of Two Quadratic Approaches to Hedging in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 385-413, October.
    20. Patrick Cheridito & Ulrich Horst & Michael Kupper & Traian A. Pirvu, 2011. "Equilibrium Pricing in Incomplete Markets under Translation Invariant Preferences," SFB 649 Discussion Papers SFB649DP2011-083, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    21. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    22. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    23. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    24. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    25. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    26. Marek Musiela & Thaleia Zariphopoulou, 2004. "An example of indifference prices under exponential preferences," Finance and Stochastics, Springer, vol. 8(2), pages 229-239, May.
    27. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    28. Antonio E. Bernardo & Olivier Ledoit, 2000. "Gain, Loss, and Asset Pricing," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 144-172, February.
    29. M. R. Grasselli & T. R. Hurd, 2007. "Indifference Pricing and Hedging for Volatility Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 303-317.
    30. Stadje, Mitja, 2010. "Extending dynamic convex risk measures from discrete time to continuous time: A convergence approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 391-404, December.
    31. Alexander Cherny & Dilip Madan, 2009. "New Measures for Performance Evaluation," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2371-2406, July.
    32. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath & Hyejin Ku, 2007. "Coherent multiperiod risk adjusted values and Bellman’s principle," Annals of Operations Research, Springer, vol. 152(1), pages 5-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    2. Pierre Devolder & Adrien Lebègue, 2016. "Compositions of Conditional Risk Measures and Solvency Capital," Risks, MDPI, vol. 4(4), pages 1-21, December.
    3. repec:dau:papers:123456789/5374 is not listed on IDEAS
    4. Maria Arduca & Cosimo Munari, 2020. "Fundamental theorem of asset pricing with acceptable risk in markets with frictions," Papers 2012.08351, arXiv.org, revised Apr 2022.
    5. Antoon Pelsser & Mitja Stadje, 2014. "Time-Consistent And Market-Consistent Evaluations," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 25-65, January.
    6. Dilip Madan, 2015. "Asset pricing theory for two price economies," Annals of Finance, Springer, vol. 11(1), pages 1-35, February.
    7. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    8. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    9. Ibáñez, Alfredo, 2008. "Factorization of European and American option prices under complete and incomplete markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 311-325, February.
    10. Zachary Feinstein & Birgit Rudloff, 2012. "Multiportfolio time consistency for set-valued convex and coherent risk measures," Papers 1212.5563, arXiv.org, revised Oct 2014.
    11. Pelsser, Antoon & Salahnejhad Ghalehjooghi, Ahmad, 2016. "Time-consistent actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 97-112.
    12. Zachary Feinstein & Birgit Rudloff, 2018. "Time consistency for scalar multivariate risk measures," Papers 1810.04978, arXiv.org, revised Nov 2021.
    13. Alfredo Ibáñez, 2005. "Option-Pricing in Incomplete Markets: The Hedging Portfolio plus a Risk Premium-Based Recursive Approach," Computing in Economics and Finance 2005 216, Society for Computational Economics.
    14. Samuel N. Cohen & Tanut Treetanthiploet, 2019. "Gittins' theorem under uncertainty," Papers 1907.05689, arXiv.org, revised Jun 2021.
    15. Dilip B. Madan, 2016. "Benchmarking in two price financial markets," Annals of Finance, Springer, vol. 12(2), pages 201-219, May.
    16. Ibáñez, Alfredo, 2005. "Option-pricing in incomplete markets: the hedging portfolio plus a risk premium-based recursive approach," DEE - Working Papers. Business Economics. WB wb058121, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    17. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2018. "A Unified Approach to Time Consistency of Dynamic Risk Measures and Dynamic Performance Measures in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 204-221, February.
    18. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    19. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    20. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    21. Leippold, Markus & Schärer, Steven, 2017. "Discrete-time option pricing with stochastic liquidity," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 1-16.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:finphd:3-2015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/sfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.