IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2011-083.html

Equilibrium pricing in incomplete markets under translation invariant preferences

Author

Listed:
  • Cheridito, Patrick
  • Horst, Ulrich
  • Kupper, Michael
  • Pirvu, Traian A.

Abstract

We provide results on the existence and uniqueness of equilibrium in dynamically incomplete financial markets in discrete time. Our framework allows for heterogeneous agents, unspanned random endowments and convex trading constraints. In the special case where all agents have preferences of the same type and all random endowments are replicable by trading in the financial market we show that a one-fund theorem holds and give an explicit expression for the equilibrium pricing kernel. If the underlying noise is generated by finitely many Bernoulli random walks, the equilibrium dynamics can be described by a system of coupled backward stochastic difference equations, which in the continuous-time limit becomes a multi-dimensional backward stochastic differential equation. If the market is complete in equilibrium, the system of equations decouples, but if not, one needs to keep track of the prices and continuation values of all agents to solve it. As an example we simulate option prices in the presence of stochastic volatility, demand pressure and short-selling constraints.

Suggested Citation

  • Cheridito, Patrick & Horst, Ulrich & Kupper, Michael & Pirvu, Traian A., 2011. "Equilibrium pricing in incomplete markets under translation invariant preferences," SFB 649 Discussion Papers 2011-083, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2011-083
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/56666/1/675479959.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bernard Dumas & Andrew Lyasoff, 2012. "Incomplete-Market Equilibria Solved Recursively on an Event Tree," Journal of Finance, American Finance Association, vol. 67(5), pages 1897-1941, October.
    2. Martin Schweizer, 1995. "Variance-Optimal Hedging in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 20(1), pages 1-32, February.
    3. Donald J. Brown & Jan Werner, 1995. "Arbitrage and Existence of Equilibrium in Infinite Asset Markets," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(1), pages 101-114.
    4. Damir Filipović & Michael Kupper, 2008. "Equilibrium Prices For Monetary Utility Functions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 325-343.
    5. Nicolae Garleanu & Lasse Heje Pedersen & Allen M. Poteshman, 2009. "Demand-Based Option Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 22(10), pages 4259-4299, October.
    6. A. Ben-Tal & M. Teboulle, 1987. "Penalty Functions and Duality in Stochastic Programming Via (phi)-Divergence Functionals," Mathematics of Operations Research, INFORMS, vol. 12(2), pages 224-240, May.
    7. Ulrich Horst & Matthias Müller, 2007. "On the Spanning Property of Risk Bonds Priced by Equilibrium," Mathematics of Operations Research, INFORMS, vol. 32(4), pages 784-807, November.
    8. repec:hum:wpaper:sfb649dp2010-010 is not listed on IDEAS
    9. Geanakoplos, John, 1990. "An introduction to general equilibrium with incomplete asset markets," Journal of Mathematical Economics, Elsevier, vol. 19(1-2), pages 1-38.
    10. Aharon Ben-Tal & Marc Teboulle, 1986. "Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming," Management Science, INFORMS, vol. 32(11), pages 1445-1466, November.
    11. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini & Marco Taboga, 2009. "Portfolio Selection With Monotone Mean‐Variance Preferences," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 487-521, July.
    12. Domenico Cuoco & Hua He, 2001. "Dynamic Aggregation and Computation of Equilibria in Finite-Dimensional Economies with Incomplete Financial Markets," Annals of Economics and Finance, Society for AEF, vol. 2(2), pages 265-296, November.
    13. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    14. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    15. Patrick Cheridito & Freddy Delbaen & Michael Kupper, 2005. "Coherent and convex monetary risk measures for unbounded càdlàg processes," Finance and Stochastics, Springer, vol. 9(3), pages 369-387, July.
    16. repec:dau:papers:123456789/2267 is not listed on IDEAS
    17. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52, January.
    18. Michail Anthropelos & Gordan Žitković, 2010. "Partial equilibria with convex capital requirements: existence, uniqueness and stability," Annals of Finance, Springer, vol. 6(1), pages 107-135, January.
    19. Cheng, Harrison H. C., 1991. "Asset market equilibrium in infinite dimensional complete markets," Journal of Mathematical Economics, Elsevier, vol. 20(1), pages 137-152.
    20. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    21. Werner, Jan, 1987. "Arbitrage and the Existence of Competitive Equilibrium," Econometrica, Econometric Society, vol. 55(6), pages 1403-1418, November.
    22. Magill, Michael J. P. & Shafer, Wayne J., 1990. "Characterisation of generically complete real asset structures," Journal of Mathematical Economics, Elsevier, vol. 19(1-2), pages 167-194.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Cheridito & Ulrich Horst & Michael Kupper & Traian A. Pirvu, 2016. "Equilibrium Pricing in Incomplete Markets Under Translation Invariant Preferences," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 174-195, February.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Wassim Daher & V. Martins-da-Rocha & Yiannis Vailakis, 2007. "Asset market equilibrium with short-selling and differential information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 32(3), pages 425-446, September.
    4. Ha-Huy, Thai & Le Van, Cuong & Nguyen, Manh-Hung, 2016. "Arbitrage and asset market equilibrium in infinite dimensional economies with short-selling and risk-averse expected utilities," Mathematical Social Sciences, Elsevier, vol. 79(C), pages 30-39.
    5. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2019. "A Volatility Smile-Based Uncertainty Index," Working Papers Series 502, Central Bank of Brazil, Research Department.
    6. Nizar Allouch & Monique Florenzano, 2004. "Edgeworth and Walras equilibria of an arbitrage-free exchange economy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(2), pages 353-370, January.
    7. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    8. Jianhui Li & Sebastian A. Gehricke & Jin E. Zhang, 2019. "How do US options traders “smirk” on China? Evidence from FXI options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(11), pages 1450-1470, November.
    9. Bakshi, Gurdip & Madan, Dilip & Panayotov, George, 2010. "Returns of claims on the upside and the viability of U-shaped pricing kernels," Journal of Financial Economics, Elsevier, vol. 97(1), pages 130-154, July.
    10. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    11. Thai Ha Huy & Cuong Le Van, 2014. "Arbitrage and asset market equilibrium in finite dimensional economies with short," Working Papers 2014-122, Department of Research, Ipag Business School.
    12. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2021. "A volatility smile-based uncertainty index," Annals of Finance, Springer, vol. 17(2), pages 231-246, June.
    13. Elyas Elyasiani & Silvia Muzzioli & Alessio Ruggieri, 2016. "Forecasting and pricing powers of option-implied tree models: Tranquil and volatile market conditions," Department of Economics 0099, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    14. Gkionis, Konstantinos & Kostakis, Alexandros & Skiadopoulos, George & Stilger, Przemyslaw S., 2021. "Positive stock information in out-of-the-money option prices," Journal of Banking & Finance, Elsevier, vol. 128(C).
    15. Senda Ounaies & Jean-Marc Bonnisseau & Souhail Chebbi, 2016. "Equilibrium of a production economy with noncompact attainable allocations set," Documents de travail du Centre d'Economie de la Sorbonne 16056r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Oct 2017.
    16. Kevin Aretz & Ming-Tsung Lin & Ser-Huang Poon, 2023. "Moneyness, Underlying Asset Volatility, and the Cross-Section of Option Returns," Review of Finance, European Finance Association, vol. 27(1), pages 289-323.
    17. Dana, Rose-Anne & Le Van, Cuong, 2000. "Arbitrage, duality and asset equilibria," Journal of Mathematical Economics, Elsevier, vol. 34(3), pages 397-413, November.
    18. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    19. Jana Bielagk & Arnaud Lionnet & Gonçalo dos Reis, 2015. "Equilibrium pricing under relative performance concerns," Working Papers hal-01245812, HAL.
    20. Peter Van Tassel, 2016. "Merger options and risk arbitrage," Staff Reports 761, Federal Reserve Bank of New York.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • D52 - Microeconomics - - General Equilibrium and Disequilibrium - - - Incomplete Markets
    • D53 - Microeconomics - - General Equilibrium and Disequilibrium - - - Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2011-083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.