IDEAS home Printed from https://ideas.repec.org/a/oup/restud/v62y1995i1p101-114..html
   My bibliography  Save this article

Arbitrage and Existence of Equilibrium in Infinite Asset Markets

Author

Listed:
  • Donald J. Brown
  • Jan Werner

Abstract

This paper develops a framework for a general equilibrium analysis of asset markets when the number of assets is infinite. Such markets have been studied in the context of asset pricing theories. Our main results concern the existence of an equilibrium. We show that an equilibrium exists if there is a price system under which no investor has an arbitrage opportunity. A similar result has been previously known to hold in finite asset markets. Our extension to infinite assets involves a concept of an arbitrage opportunity which is different from the one used in finite markets. An arbitrage opportunity in finite asset markets is a portfolio that guarantees non-negative payoff in every event, positive payoff in some event, and has zero price. For the case of infinite asset markets, we introduce a concept of sequential arbitrage opportunity which is a sequence of portfolios which increases an investor's utility indefinitely and has zero price in the limit. We show that a sequential arbitrage opportunity and an arbitrage portfolio are equivalent concepts in finite markets but not in their infinite counterpart.

Suggested Citation

  • Donald J. Brown & Jan Werner, 1995. "Arbitrage and Existence of Equilibrium in Infinite Asset Markets," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(1), pages 101-114.
  • Handle: RePEc:oup:restud:v:62:y:1995:i:1:p:101-114.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.2307/2297843
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:62:y:1995:i:1:p:101-114.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/restud .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.