IDEAS home Printed from https://ideas.repec.org/a/bla/jfinan/v47y1992i2p809-16.html
   My bibliography  Save this article

A Simple and Numerically Efficient Valuation Method for American Puts Using a Modified Geske-Johnson Approach

Author

Listed:
  • Bunch, David S
  • Johnson, Herb

Abstract

R. Geske and H. E. Johnson (1984) develop an equation for the American put price and obtain accurate prices using a method requiring quadrivariate normal integrals evaluated over an interval containing four equally spaced exercise points. The authors show that a modification of their method, which uses optimal placement of exercise points, yields, in most cases, accurate values using nothing more than bivariate normals. In the more difficult (deep-in-the-money) cases, trivariate normals suffice. Copyright 1992 by American Finance Association.

Suggested Citation

  • Bunch, David S & Johnson, Herb, 1992. " A Simple and Numerically Efficient Valuation Method for American Puts Using a Modified Geske-Johnson Approach," Journal of Finance, American Finance Association, vol. 47(2), pages 809-816, June.
  • Handle: RePEc:bla:jfinan:v:47:y:1992:i:2:p:809-16
    as

    Download full text from publisher

    File URL: http://links.jstor.org/sici?sici=0022-1082%28199206%2947%3A2%3C809%3AASANEV%3E2.0.CO%3B2-K&origin=repec
    File Function: full text
    Download Restriction: Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riccardo Fazio, 2015. "A Posteriori Error Estimator for a Front-Fixing Finite Difference Scheme for American Options," Papers 1504.04594, arXiv.org.
    2. Ben-Ameur, Hatem & de Frutos, Javier & Fakhfakh, Tarek & Diaby, Vacaba, 2013. "Upper and lower bounds for convex value functions of derivative contracts," Economic Modelling, Elsevier, vol. 34(C), pages 69-75.
    3. Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
    4. Luca Barzanti & Corrado Corradi & Martina Nardon, 2006. "On the efficient application of the repeated Richardson extrapolation technique to option pricing," Working Papers 147, Department of Applied Mathematics, Università Ca' Foscari Venezia.
    5. Koulisianis, M.D & Papatheodorou, T.S, 2000. "A ‘moving index’ method for the solution of the American options valuation problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(4), pages 373-381.
    6. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    7. D. J. Manuge & P. T. Kim, 2014. "A fast Fourier transform method for Mellin-type option pricing," Papers 1403.3756, arXiv.org, revised Mar 2014.
    8. Alfredo Ibáñez, 2003. "Robust Pricing of the American Put Option: A Note on Richardson Extrapolation and the Early Exercise Premium," Management Science, INFORMS, vol. 49(9), pages 1210-1228, September.
    9. Kimura, Toshikazu, 2010. "Valuing executive stock options: A quadratic approximation," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1368-1379, December.
    10. Chung, Y. Peter & Johnson, Herb, 2011. "Extendible options: The general case," Finance Research Letters, Elsevier, vol. 8(1), pages 15-20, March.
    11. feng dai, 2004. "The Partial Distribution: Definition, Properties and Applications in Economy," Econometrics 0403008, EconWPA.
    12. Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.
    13. Fabozzi, Frank J. & Paletta, Tommaso & Stanescu, Silvia & Tunaru, Radu, 2016. "An improved method for pricing and hedging long dated American options," European Journal of Operational Research, Elsevier, vol. 254(2), pages 656-666.
    14. Gong, Pu & He, Zhiwei & Zhu, Song-Ping, 2006. "Pricing convertible bonds based on a multi-stage compound-option model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 449-462.
    15. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    16. Jérôme Detemple, 2014. "Optimal Exercise for Derivative Securities," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 459-487, December.
    17. Ho, T. S. & Stapleton, Richard C. & Subrahmanyam, Marti G., 1997. "The valuation of American options on bonds1," Journal of Banking & Finance, Elsevier, vol. 21(11-12), pages 1487-1513, December.
    18. Claus Munk, 1998. "The Markov Chain Approximation Approach for Numerical Solution of Stochastic Control Problems: Experiences from Merton's Problem," Finance 9802002, EconWPA.
    19. Feng Dai & Lin Liang, 2005. "The Advance in Partial Distribution£ºA New Mathematical Tool for Economic Management," Econometrics 0508001, EconWPA.
    20. Jérôme Detemple & Weidong Tian, 2002. "The Valuation of American Options for a Class of Diffusion Processes," Management Science, INFORMS, vol. 48(7), pages 917-937, July.
    21. Roland Mallier & Ghada Alobaidi, 2000. "Laplace transforms and American options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(4), pages 241-256.
    22. Chockalingam, Arun & Muthuraman, Kumar, 2015. "An approximate moving boundary method for American option pricing," European Journal of Operational Research, Elsevier, vol. 240(2), pages 431-438.
    23. Mark Broadie & Jérôme B. Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jfinan:v:47:y:1992:i:2:p:809-16. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/afaaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.