IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v41y2014icp15-22.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Pricing perpetual American CatEPut options when stock prices are correlated with catastrophe losses

Author

Listed:
  • Kim, Hwa-Sung
  • Kim, Bara
  • Kim, Jerim

Abstract

A catastrophe equity put (CatEPut) option is a catastrophe derivative that allows insurance companies to raise equity capital when they face catastrophe losses. This study focuses on a pricing model for a CatEPut options. First, unlike previous research, this study provides a CatEPut option pricing model in which stock prices and catastrophe losses are moderately correlated. Second, this study examines the practical characteristics of American CatEPut options. Third, through a numerical analysis, we observe that it is necessary to consider the effects of a moderate correlation between stock prices and catastrophe losses on the prices of perpetual American CatEPut options.

Suggested Citation

  • Kim, Hwa-Sung & Kim, Bara & Kim, Jerim, 2014. "Pricing perpetual American CatEPut options when stock prices are correlated with catastrophe losses," Economic Modelling, Elsevier, vol. 41(C), pages 15-22.
  • Handle: RePEc:eee:ecmode:v:41:y:2014:i:c:p:15-22
    DOI: 10.1016/j.econmod.2014.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999314001357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2014.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chia‐Chien Chang & Shih‐Kuei Lin & Min‐Teh Yu, 2011. "Valuation of Catastrophe Equity Puts With Markov‐Modulated Poisson Processes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 78(2), pages 447-473, June.
    2. Jaimungal, Sebastian & Wang, Tao, 2006. "Catastrophe options with stochastic interest rates and compound Poisson losses," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 469-483, June.
    3. Chang, Lung-fu & Hung, Mao-wei, 2009. "Analytical valuation of catastrophe equity options with negative exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 59-69, February.
    4. Bakshi, Gurdip & Madan, Dilip, 2002. "Average Rate Claims with Emphasis on Catastrophe Loss Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(1), pages 93-115, March.
    5. Kim, Bara & Kim, Jeongsim, 2011. "Representation of Downton’s bivariate exponential random vector and its applications," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1743-1750.
    6. Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
    7. Lin, Shih-Kuei & Chang, Chia-Chien & Powers, Michael R., 2009. "The valuation of contingent capital with catastrophe risks," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 65-73, August.
    8. Lin, X. Sheldon & Wang, Tao, 2009. "Pricing perpetual American catastrophe put options: A penalty function approach," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 287-295, April.
    9. Cox, Samuel H. & Fairchild, Joseph R. & Pedersen, Hal W., 2004. "Valuation of structured risk management products," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 259-272, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bi, Hongwei & Wang, Guanying & Wang, Xingchun, 2019. "Valuation of catastrophe equity put options with correlated default risk and jump risk," Finance Research Letters, Elsevier, vol. 29(C), pages 323-329.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xingchun, 2020. "Catastrophe equity put options with floating strike prices," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    2. Wang, Xingchun, 2019. "Valuation of new-designed contracts for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    3. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    4. Yu, Jun, 2015. "Catastrophe options with double compound Poisson processes," Economic Modelling, Elsevier, vol. 50(C), pages 291-297.
    5. Lo, Chien-Ling & Lee, Jin-Ping & Yu, Min-Teh, 2013. "Valuation of insurers’ contingent capital with counterparty risk and price endogeneity," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5025-5035.
    6. Eckhard Platen & David Taylor, 2016. "Loading Pricing of Catastrophe Bonds and Other Long-Dated, Insurance-Type Contracts," Research Paper Series 379, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Wang, Xingchun, 2016. "Catastrophe equity put options with target variance," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 79-86.
    8. Koo, Eunho & Kim, Geonwoo, 2017. "Explicit formula for the valuation of catastrophe put option with exponential jump and default risk," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 1-7.
    9. Wang, Guanying & Wang, Xingchun & Shao, Xinjian, 2022. "Exchange options for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    10. Bi, Hongwei & Wang, Guanying & Wang, Xingchun, 2019. "Valuation of catastrophe equity put options with correlated default risk and jump risk," Finance Research Letters, Elsevier, vol. 29(C), pages 323-329.
    11. Massimo Arnone & Michele Leonardo Bianchi & Anna Grazia Quaranta & Gian Luca Tassinari, 2021. "Catastrophic risks and the pricing of catastrophe equity put options," Computational Management Science, Springer, vol. 18(2), pages 213-237, June.
    12. Xingchun Wang, 2016. "The Pricing of Catastrophe Equity Put Options with Default Risk," International Review of Finance, International Review of Finance Ltd., vol. 16(2), pages 181-201, June.
    13. Chen, Jun-Home & Lian, Yu-Min & Liao, Szu-Lang, 2022. "Pricing catastrophe equity puts with counterparty risks under Markov-modulated, default-intensity processes," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    14. Lin, X. Sheldon & Wang, Tao, 2009. "Pricing perpetual American catastrophe put options: A penalty function approach," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 287-295, April.
    15. Perrakis, Stylianos & Boloorforoosh, Ali, 2013. "Valuing catastrophe derivatives under limited diversification: A stochastic dominance approach," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3157-3168.
    16. Gunther Leobacher & Philip Ngare, 2014. "Utility indifference pricing of derivatives written on industrial loss indexes," Papers 1404.0879, arXiv.org.
    17. Stylianos Perrakis & Ali Boloorforoosh, 2018. "Catastrophe futures and reinsurance contracts: An incomplete markets approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 104-128, January.
    18. Giuricich, Mario Nicoló & Burnecki, Krzysztof, 2019. "Modelling of left-truncated heavy-tailed data with application to catastrophe bond pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 498-513.
    19. Ma, Zong-Gang & Ma, Chao-Qun, 2013. "Pricing catastrophe risk bonds: A mixed approximation method," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 243-254.
    20. Ben Ammar, Semir & Braun, Alexander & Eling, Martin, 2015. "Alternative Risk Transfer and Insurance-Linked Securities: Trends, Challenges and New Market Opportunities," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 56, number 56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:41:y:2014:i:c:p:15-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.