IDEAS home Printed from https://ideas.repec.org/p/tiu/tiutis/52cbee73-e1dc-4ed3-8ec9-61bd0090c3da.html
   My bibliography  Save this paper

Expected Utility and Catastrophic Risk in a Stochastic Economy-Climate Model

Author

Listed:
  • Ikefuji, M.
  • Laeven, R.J.A.

    (Tilburg University, School of Economics and Management)

  • Magnus, J.R.

    (Tilburg University, School of Economics and Management)

  • Muris, C.H.M.

    (Tilburg University, School of Economics and Management)

Abstract

We analyze a stochastic dynamic finite-horizon economic model with climate change, in which the social planner faces uncertainty about future climate change and its economic damages. Our model (SDICE*) incorporates, possibly heavy-tailed, stochasticity in Nordhaus’ deterministic DICE model. We develop a regression-based numerical method for solving a general class of dynamic finite-horizon economy–climate models with potentially heavy-tailed uncertainty and general utility functions. We then apply this method to SDICE* and examine the effects of light- and heavy-tailed uncertainty. The results indicate that the effects can be substantial, depending on the nature and extent of the uncertainty and the social planner’s preferences.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Ikefuji, M. & Laeven, R.J.A. & Magnus, J.R. & Muris, C.H.M., 2010. "Expected Utility and Catastrophic Risk in a Stochastic Economy-Climate Model," Other publications TiSEM 52cbee73-e1dc-4ed3-8ec9-6, Tilburg University, School of Economics and Management.
  • Handle: RePEc:tiu:tiutis:52cbee73-e1dc-4ed3-8ec9-61bd0090c3da
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/1283031/2010-122.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Simone Cerreia‐Vioglio & David Dillenberger & Pietro Ortoleva, 2015. "Cautious Expected Utility and the Certainty Effect," Econometrica, Econometric Society, vol. 83, pages 693-728, March.
    2. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    3. Carriere, Jacques F., 1996. "Valuation of the early-exercise price for options using simulations and nonparametric regression," Insurance: Mathematics and Economics, Elsevier, vol. 19(1), pages 19-30, December.
    4. Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," NBER Working Papers 21637, National Bureau of Economic Research, Inc.
    5. Simon Dietz, 2011. "High impact, low probability? An empirical analysis of risk in the economics of climate change," Climatic Change, Springer, vol. 108(3), pages 519-541, October.
    6. Derek Lemoine & Christian Traeger, 2014. "Watch Your Step: Optimal Policy in a Tipping Climate," American Economic Journal: Economic Policy, American Economic Association, vol. 6(1), pages 137-166, February.
    7. Chichilnisky, Graciela, 2000. "An axiomatic approach to choice under uncertainty with catastrophic risks," Resource and Energy Economics, Elsevier, vol. 22(3), pages 221-231, July.
    8. Ikefuji, M. & Laeven, R.J.A. & Magnus, J.R. & Muris, C.H.M., 2010. "Burr Utility," Other publications TiSEM fddee215-edea-4800-ba72-d, Tilburg University, School of Economics and Management.
      • Ikefuji, M. & Laeven, R.J.A. & Magnus, J.R. & Muris, C.H.M., 2010. "Burr Utility," Discussion Paper 2010-81, Tilburg University, Center for Economic Research.
    9. Christopher A. Sims, 2001. "Pitfalls of a Minimax Approach to Model Uncertainty," American Economic Review, American Economic Association, vol. 91(2), pages 51-54, May.
    10. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    11. Robert S. Pindyck, 2011. "Fat Tails, Thin Tails, and Climate Change Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 258-274, Summer.
    12. Geweke, John, 2001. "A note on some limitations of CRRA utility," Economics Letters, Elsevier, vol. 71(3), pages 341-345, June.
    13. Gollier, Christian, 2002. "Time Horizon and the Discount Rate," Journal of Economic Theory, Elsevier, vol. 107(2), pages 463-473, December.
    14. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Optimal fiscal and monetary policy under imperfect competition," Journal of Macroeconomics, Elsevier, vol. 26(2), pages 183-209, June.
    15. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    16. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Optimal fiscal and monetary policy under sticky prices," Journal of Economic Theory, Elsevier, vol. 114(2), pages 198-230, February.
    17. Kimball, Miles S, 1990. "Precautionary Saving in the Small and in the Large," Econometrica, Econometric Society, vol. 58(1), pages 53-73, January.
    18. Gilboa,Itzhak, 2009. "Theory of Decision under Uncertainty," Cambridge Books, Cambridge University Press, number 9780521517324.
    19. Ikefuji, M. & Laeven, R.J.A. & Magnus, J.R. & Muris, C.H.M., 2010. "Scrap Value Functions in Dynamic Decision Problems," Discussion Paper 2010-77, Tilburg University, Center for Economic Research.
    20. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2015. "Expected utility and catastrophic consumption risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 306-312.
    21. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    22. Christian Traeger, 2014. "A 4-Stated DICE: Quantitatively Addressing Uncertainty Effects in Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(1), pages 1-37, September.
    23. In Hwang & Frédéric Reynès & Richard Tol, 2013. "Climate Policy Under Fat-Tailed Risk: An Application of Dice," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 415-436, November.
    24. Yongyang Cai & Timothy M. Lenton & Thomas S. Lontzek, 2016. "Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction," Nature Climate Change, Nature, vol. 6(5), pages 520-525, May.
    25. Leach, Andrew J., 2007. "The climate change learning curve," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1728-1752, May.
    26. Matthew Rabin, 2000. "Risk Aversion and Expected-Utility Theory: A Calibration Theorem," Econometrica, Econometric Society, vol. 68(5), pages 1281-1292, September.
    27. Alan Manne & Richard Richels, 1992. "Buying Greenhouse Insurance: The Economic Costs of CO2 Emission Limits," MIT Press Books, The MIT Press, edition 1, volume 1, number 026213280x, December.
    28. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    29. Buchholz, Wolfgang & Schymura, Michael, 2012. "Expected utility theory and the tyranny of catastrophic risks," Ecological Economics, Elsevier, vol. 77(C), pages 234-239.
    30. Keller, Klaus & Bolker, Benjamin M. & Bradford, D.F.David F., 2004. "Uncertain climate thresholds and optimal economic growth," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 723-741, July.
    31. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    32. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    33. King, Robert G. & Rebelo, Sergio T., 1999. "Resuscitating real business cycles," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 14, pages 927-1007, Elsevier.
    34. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    35. Robert J. Barro & Jose F. Ursua, 2008. "Consumption Disasters in the Twentieth Century," American Economic Review, American Economic Association, vol. 98(2), pages 58-63, May.
    36. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    37. Roughgarden, Tim & Schneider, Stephen H., 1999. "Climate change policy: quantifying uncertainties for damages and optimal carbon taxes," Energy Policy, Elsevier, vol. 27(7), pages 415-429, July.
    38. Kenneth J. Arrow, 1974. "The Use of Unbounded Utility Functions in Expected-Utility Maximization: Response," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 88(1), pages 136-138.
    39. Christian Gollier, 2008. "Discounting with fat-tailed economic growth," Journal of Risk and Uncertainty, Springer, vol. 37(2), pages 171-186, December.
    40. Loïc Berger & Johannes Emmerling & Massimo Tavoni, 2017. "Managing Catastrophic Climate Risks Under Model Uncertainty Aversion," Post-Print hal-01744501, HAL.
    41. Robert J. Barro, 2009. "Rare Disasters, Asset Prices, and Welfare Costs," American Economic Review, American Economic Association, vol. 99(1), pages 243-264, March.
    42. Johannes Brumm & Simon Scheidegger, 2017. "Using Adaptive Sparse Grids to Solve High‐Dimensional Dynamic Models," Econometrica, Econometric Society, vol. 85, pages 1575-1612, September.
    43. Peter H. Howard & Thomas Sterner, 2017. "Few and Not So Far Between: A Meta-analysis of Climate Damage Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 197-225, September.
    44. Dietz, Simon, 2011. "High impact, low probability?: an empirical analysis of risk in the economics of climate change," LSE Research Online Documents on Economics 38586, London School of Economics and Political Science, LSE Library.
    45. Masako Ikefuji & Roger Laeven & Jan Magnus & Chris Muris, 2013. "Pareto utility," Theory and Decision, Springer, vol. 75(1), pages 43-57, July.
    46. Peter C. Fishburn, 1976. "Unbounded Utility Functions in Expected Utility Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 90(1), pages 163-168.
    47. Kelly, David L. & Kolstad, Charles D., 1999. "Bayesian learning, growth, and pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 491-518, February.
    48. Ackerman, Frank & Stanton, Elizabeth A. & Bueno, Ramón, 2010. "Fat tails, exponents, extreme uncertainty: Simulating catastrophe in DICE," Ecological Economics, Elsevier, vol. 69(8), pages 1657-1665, June.
    49. Volker Krätschmer & Marcel Ladkau & Roger J. A. Laeven & John G. M. Schoenmakers & Mitja Stadje, 2018. "Optimal Stopping Under Uncertainty in Drift and Jump Intensity," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1177-1209, November.
    50. Jensen, Svenn & Traeger, Christian P., 2014. "Optimal climate change mitigation under long-term growth uncertainty: Stochastic integrated assessment and analytic findings," European Economic Review, Elsevier, vol. 69(C), pages 104-125.
    51. Loïc Berger & Johannes Emmerling & Massimo Tavoni, 2017. "Managing Catastrophic Climate Risks Under Model Uncertainty Aversion," Management Science, INFORMS, vol. 63(3), pages 749-765, March.
    52. Philip Protter & Emmanuelle Clément & Damien Lamberton, 2002. "An analysis of a least squares regression method for American option pricing," Finance and Stochastics, Springer, vol. 6(4), pages 449-471.
    53. Terence M. Ryan, 1974. "The Use of Unbounded Utility Functions in Expected-Utility Maximization: Comment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 88(1), pages 133-135.
    54. Dhami, Sanjit & Al-Nowaihi, Ali, 2010. "Optimal taxation in the presence of tax evasion: Expected utility versus prospect theory," Journal of Economic Behavior & Organization, Elsevier, vol. 75(2), pages 313-337, August.
    55. Thomas S. Lontzek & Yongyang Cai & Kenneth L. Judd & Timothy M. Lenton, 2015. "Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy," Nature Climate Change, Nature, vol. 5(5), pages 441-444, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Anthoff & Richard S. J. Tol, 2022. "Testing the Dismal Theorem," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(5), pages 885-920.
    2. Ar'anzazu de Juan & Pilar Poncela & Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2022. "Economic activity and climate change," Papers 2206.03187, arXiv.org, revised Jun 2022.
    3. Chanel, Olivier & Chichilnisky, Graciela, 2013. "Valuing life: Experimental evidence using sensitivity to rare events," Ecological Economics, Elsevier, vol. 85(C), pages 198-205.
    4. De Bruin, Kelly & Kiran Krishnamurthy, Chandra, 2021. "Optimal Climate Policy with Fat-tailed Uncertainty: What the Models Can Tell Us," Papers WP697, Economic and Social Research Institute (ESRI).
    5. Ikefuji, M. & Laeven, R.J.A. & Magnus, J.R. & Muris, C.H.M., 2010. "Burr Utility," Discussion Paper 2010-81, Tilburg University, Center for Economic Research.
      • Ikefuji, M. & Laeven, R.J.A. & Magnus, J.R. & Muris, C.H.M., 2010. "Burr Utility," Other publications TiSEM fddee215-edea-4800-ba72-d, Tilburg University, School of Economics and Management.
    6. Lucas Bretschger & Alexandra Vinogradova, 2014. "Growth and Mitigation Policies with Uncertain Climate Damage," CEEES Paper Series CE3S-02/14, European University at St. Petersburg, Department of Economics.
    7. Bretschger, Lucas & Suphaphiphat, Nujin, 2014. "Effective climate policies in a dynamic North–South model," European Economic Review, Elsevier, vol. 69(C), pages 59-77.
    8. Christian Fries & Lennart Quante, 2023. "Intergenerational Equity in Models of Climate Change Mitigation: Stochastic Interest Rates introduce Adverse Effects, but (Non-linear) Funding Costs can Improve Intergenerational Equity," Papers 2309.16186, arXiv.org, revised Sep 2023.
    9. Stanca Lorenzo, 2023. "Robust Bayesian Choice," Working papers 079, Department of Economics and Statistics (Dipartimento di Scienze Economico-Sociali e Matematico-Statistiche), University of Torino.
    10. Lorenzo Stanca, 2023. "Robust Bayesian Choice," Carlo Alberto Notebooks 690 JEL Classification: C, Collegio Carlo Alberto.
    11. Thijs Dekker & Rob Dellink & Janina Ketterer, 2013. "The Fatter the Tail, the Fatter the Climate Agreement - Simulating the Influence of Fat Tails in Climate Change Damages on the Success of International Climate Negotiations," CESifo Working Paper Series 4059, CESifo.
    12. David Comerford, 2013. "A balance of questions: what can we ask of climate change economics?," Edinburgh School of Economics Discussion Paper Series 216, Edinburgh School of Economics, University of Edinburgh.
    13. Christian P. Fries & Lennart Quante, 2023. "Accounting for Financing Risks improves Intergenerational Equity of Climate Change Mitigation," Papers 2312.07614, arXiv.org.
    14. Grechuk, Bogdan & Zabarankin, Michael, 2014. "Risk averse decision making under catastrophic risk," European Journal of Operational Research, Elsevier, vol. 239(1), pages 166-176.
    15. Buchholz, Wolfgang & Schymura, Michael, 2012. "Expected utility theory and the tyranny of catastrophic risks," Ecological Economics, Elsevier, vol. 77(C), pages 234-239.
    16. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.
    17. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Tail-effect and the Role of Greenhouse Gas Emissions Control," Working Paper Series 6613, Department of Economics, University of Sussex Business School.
    18. Masako Ikefuji & Roger Laeven & Jan Magnus & Chris Muris, 2013. "Pareto utility," Theory and Decision, Springer, vol. 75(1), pages 43-57, July.
    19. Rob Dellink & Thijs Dekker & Janina Ketterer, 2013. "The Fatter the Tail, the Fatter the Climate Agreement," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(2), pages 277-305, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masako Ikefuji & Roger J. A. Laeven & Jan R. Magnus & Chris Muris, 2011. "Weitzman meets Nordhaus: Expected utility and catastrophic risk in a stochastic economy-climate model," ISER Discussion Paper 0825, Institute of Social and Economic Research, Osaka University.
    2. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2015. "Expected utility and catastrophic consumption risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 306-312.
    3. Masako Ikefuji & Roger Laeven & Jan Magnus & Chris Muris, 2014. "Expected Utility and Catastrophic Risk," Tinbergen Institute Discussion Papers 14-133/III, Tinbergen Institute.
    4. Millner, Antony, 2013. "On welfare frameworks and catastrophic climate risks," Journal of Environmental Economics and Management, Elsevier, vol. 65(2), pages 310-325.
    5. Frederick Ploeg, 2021. "Carbon pricing under uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1122-1142, October.
    6. Rick van der Ploeg, 2020. "Discounting and Climate Policy," CESifo Working Paper Series 8441, CESifo.
    7. Hwang, In Chang & Reynès, Frédéric & Tol, Richard S.J., 2017. "The effect of learning on climate policy under fat-tailed risk," Resource and Energy Economics, Elsevier, vol. 48(C), pages 1-18.
    8. Olijslagers, Stan & van der Ploeg, Frederick & van Wijnbergen, Sweder, 2023. "On current and future carbon prices in a risky world," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    9. Samuel Jovan Okullo, 2020. "Determining the Social Cost of Carbon: Under Damage and Climate Sensitivity Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 79-103, January.
    10. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    11. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    12. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    13. Jensen, Svenn & Traeger, Christian P., 2014. "Optimal climate change mitigation under long-term growth uncertainty: Stochastic integrated assessment and analytic findings," European Economic Review, Elsevier, vol. 69(C), pages 104-125.
    14. van der Ploeg, Frederick & ,, 2018. "Pricing Carbon Under Economic and Climactic Risks: Leading-Order Results from Asymptotic Analysis," CEPR Discussion Papers 12642, C.E.P.R. Discussion Papers.
    15. Kelly, David L. & Tan, Zhuo, 2015. "Learning and climate feedbacks: Optimal climate insurance and fat tails," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 98-122.
    16. Yongyang Cai & Thomas S. Lontzek, 2019. "The Social Cost of Carbon with Economic and Climate Risks," Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 2684-2734.
    17. Simon Dietz & Nicoleta Anca Matei, 2016. "Spaces for Agreement: A Theory of Time-Stochastic Dominance and an Application to Climate Change," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(1), pages 85-130.
    18. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    19. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.
    20. Hjort, Ingrid, 2016. "Potential Climate Risks in Financial Markets: A Literature Overview," Memorandum 01/2016, Oslo University, Department of Economics.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • E2 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:52cbee73-e1dc-4ed3-8ec9-61bd0090c3da. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.