IDEAS home Printed from https://ideas.repec.org/p/eus/ce3swp/0214.html
   My bibliography  Save this paper

Growth and Mitigation Policies with Uncertain Climate Damage

Author

Listed:
  • Lucas Bretschger
  • Alexandra Vinogradova

Abstract

We analyze an endogenously growing economy in which production generates greenhouse gas emissions leading to global temperature increase. Global warming causes stochastic climate shocks, modeled by the Poisson process, which destroy part of the economy's capital stock. Part of the output may be devoted to emissions abatement and thus damages from climate shocks may be reduced. We solve the model in closed form and show that the optimal path is characterized by a constant growth rate of consumption and capital stock until a shock arrives, triggering a downward jump in both variables. The magnitude of the jump depends on the Poisson arrival rate, abatement efficiency, damage intensity, and the elasticity of intertemporal consumption substitution. Optimum mitigation policy consists of spending a constant share of output on abatement, which is an increasing function of the Poisson arrival rate, the economy's productivity, polluting intensity of output, and the intensity of environmental damage. Optimum growth and abatement react sharply to changes in the arrival rate and the damage intensity, suggesting more stringent climate policies for a realistic world with uncertainty compared to the certainty-equivalent case. We extend the baseline model by adding climate-induced fluctuations around the growth trend and stock pollution effects, showing the robustness of our results.

Suggested Citation

  • Lucas Bretschger & Alexandra Vinogradova, 2014. "Growth and Mitigation Policies with Uncertain Climate Damage," CEEES Paper Series CE3S-02/14, European University at St. Petersburg, Department of Economics.
  • Handle: RePEc:eus:ce3swp:0214
    as

    Download full text from publisher

    File URL: https://eusp.org/sites/default/files/econpapers/ce3s-02_14.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ken Sennewald & Klaus Wälde, 2006. "“Itô's Lemma” and the Bellman Equation for Poisson Processes: An Applied View," Journal of Economics, Springer, vol. 89(1), pages 1-36, October.
    2. Susanne Soretz, 2007. "Efficient Dynamic Pollution Taxation in an Uncertain Environment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(1), pages 57-84, January.
    3. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    4. Bommier, Antoine & Lanz, Bruno & Zuber, Stéphane, 2015. "Models-as-usual for unusual risks? On the value of catastrophic climate change," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 1-22.
    5. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    6. Derek Lemoine & Christian Traeger, 2014. "Watch Your Step: Optimal Policy in a Tipping Climate," American Economic Journal: Economic Policy, American Economic Association, vol. 6(1), pages 137-166, February.
    7. de Zeeuw, Aart & Zemel, Amos, 2012. "Regime shifts and uncertainty in pollution control," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 939-950.
    8. Yongyang Cai & Kenneth L. Judd & Thomas S. Lontzek, 2013. "The Social Cost of Stochastic and Irreversible Climate Change," NBER Working Papers 18704, National Bureau of Economic Research, Inc.
    9. Tsur, Yacov & Zemel, Amos, 1996. "Accounting for global warming risks: Resource management under event uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 20(6-7), pages 1289-1305.
    10. Tsur, Yacov & Zemel, Amos, 1998. "Pollution control in an uncertain environment," Journal of Economic Dynamics and Control, Elsevier, vol. 22(6), pages 967-975, June.
    11. Brock, William A. & Taylor, M. Scott, 2005. "Economic Growth and the Environment: A Review of Theory and Empirics," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 28, pages 1749-1821, Elsevier.
    12. Armon Rezai & Duncan K. Foley & Lance Taylor, 2016. "Global Warming and Economic Externalities," Studies in Economic Theory, in: Graciela Chichilnisky & Armon Rezai (ed.), The Economics of the Global Environment, pages 447-470, Springer.
    13. Robert S. Pindyck & Neng Wang, 2013. "The Economic and Policy Consequences of Catastrophes," American Economic Journal: Economic Policy, American Economic Association, vol. 5(4), pages 306-339, November.
    14. Pindyck, Robert S., 2012. "Uncertain outcomes and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 289-303.
    15. Robert S. Pindyck, 2013. "The Climate Policy Dilemma," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 219-237, July.
    16. Frederick Van Der Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(1), pages 283-311, February.
    17. Cees Withagen, 1995. "Pollution, abatement and balanced growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 5(1), pages 1-8, January.
    18. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    19. Toche, Patrick, 2005. "A tractable model of precautionary saving in continuous time," Economics Letters, Elsevier, vol. 87(2), pages 267-272, May.
    20. Lans Bovenberg, A. & Smulders, Sjak, 1995. "Environmental quality and pollution-augmenting technological change in a two-sector endogenous growth model," Journal of Public Economics, Elsevier, vol. 57(3), pages 369-391, July.
    21. Thomas S. Lontzek & Daiju Narita, 2011. "Risk‐Averse Mitigation Decisions in an Unpredictable Climate System," Scandinavian Journal of Economics, Wiley Blackwell, vol. 113(4), pages 937-958, December.
    22. van der Ploeg, Frederick, 2014. "Abrupt positive feedback and the social cost of carbon," European Economic Review, Elsevier, vol. 67(C), pages 28-41.
    23. Lucas Bretschger & Simone Valente, 2011. "Climate Change and Uneven Development," Scandinavian Journal of Economics, Wiley Blackwell, vol. 113(4), pages 825-845, December.
    24. Steger, Thomas M., 2005. "Stochastic growth under Wiener and Poisson uncertainty," Economics Letters, Elsevier, vol. 86(3), pages 311-316, March.
    25. Clarke, Harry R. & Reed, William J., 1994. "Consumption/pollution tradeoffs in an environment vulnerable to pollution-related catastrophic collapse," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 991-1010, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Marc Bourgeon & Margot Hovsepian, 2017. "Green Technology Adoption and the Business Cycle," CESifo Working Paper Series 6485, CESifo.
    2. Lucas Bretschger, 2018. "Greening Economy, Graying Society," CER-ETH Press, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich, edition 2, number 18-001.
    3. Marc Chesney & Pierre Lasserre & Bruno Troja, 2017. "Mitigating global warming: a real options approach," Annals of Operations Research, Springer, vol. 255(1), pages 465-506, August.
    4. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    5. Müller-Fürstenberger, Georg & Schumacher, Ingmar, 2015. "Insurance and climate-driven extreme events," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 59-73.
    6. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    7. Lucas Bretschger & Alexandra Vinogradova, 2015. "Equitable and effective climate policy: Integrating less developed countries into a global climate agreement," International Economics and Economic Policy, Springer, vol. 12(4), pages 437-467, October.
    8. Can Askan Mavi, 2017. "Creative Destruction vs Destructive Destruction ? : A Schumpeterian Approach for Adaptation and Mitigation," Working Papers halshs-01455297, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucas Bretschger & Alexandra Vinogradova, 2014. "Going beyond tradition:Growth and Mitigation Policies with Uncertain Climate Damage," CER-ETH Economics working paper series 14/202, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    2. Lucas Betschger & Alexandra Vinogradova, 2014. "Growth and Mitigation Policies with Uncertain Climate Change," OxCarre Working Papers 145, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    3. Lucas Bretschger, 2018. "Greening Economy, Graying Society," CER-ETH Press, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich, edition 2, number 18-001.
    4. Bretschger, Lucas & Suphaphiphat, Nujin, 2014. "Effective climate policies in a dynamic North–South model," European Economic Review, Elsevier, vol. 69(C), pages 59-77.
    5. Bommier, Antoine & Lanz, Bruno & Zuber, Stéphane, 2015. "Models-as-usual for unusual risks? On the value of catastrophic climate change," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 1-22.
    6. van der Ploeg, Frederick, 2014. "Abrupt positive feedback and the social cost of carbon," European Economic Review, Elsevier, vol. 67(C), pages 28-41.
    7. Frederick Ploeg & Aart Zeeuw, 2019. "Pricing Carbon and Adjusting Capital to Fend Off Climate Catastrophes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 29-50, January.
    8. de Zeeuw, Aart J. & van der Ploeg, Frederick, 2014. "Climate Tipping and Economic Growth: Precautionary Saving and the Social Cost of Carbon," CEPR Discussion Papers 9982, C.E.P.R. Discussion Papers.
    9. Lucas Bretschger & Christos Karydas, 2018. "Optimum Growth and Carbon Policies with Lags in the Climate System," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(4), pages 781-806, August.
    10. Antoine Bommier & Bruno Lanz & Stéphane Zuber, 2014. "Fair management of social risk," Documents de travail du Centre d'Economie de la Sorbonne 14017, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. Lemoine, Derek & Traeger, Christian P., 2016. "Ambiguous tipping points," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 5-18.
    12. Frederick van der Ploeg & Aart de Zeeuw, 2018. "Climate Tipping and Economic Growth: Precautionary Capital and the Price of Carbon," Journal of the European Economic Association, European Economic Association, vol. 16(5), pages 1577-1617.
    13. Ben J. Heijdra & Pim Heijnen, 2021. "Reversible Environmental Catastrophes with Disconnected Generations," De Economist, Springer, vol. 169(2), pages 211-252, May.
    14. Jean-Marc Bourgeon & Margot Hovsepian, 2017. "Green Technology Adoption and the Business Cycle," CESifo Working Paper Series 6485, CESifo.
    15. Frederick Ploeg & Aart Zeeuw, 2016. "Non-cooperative and Cooperative Responses to Climate Catastrophes in the Global Economy: A North–South Perspective," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 519-540, November.
    16. Edilio Valentini & Paolo Vitale, 2019. "Optimal Climate Policy for a Pessimistic Social Planner," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 411-443, February.
    17. Nicolas Taconet & Céline Guivarch & Antonin Pottier, 2021. "Social Cost of Carbon Under Stochastic Tipping Points," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(4), pages 709-737, April.
    18. Nævdal, Erik & Vislie, Jon, 2012. "Resource Depletion and Capital Accumulation under Catastrophic Risk: The Role of Stochastic Thresholds and Stock Pollution," Memorandum 24/2012, Oslo University, Department of Economics.

    More about this item

    Keywords

    climate policy; uncertainty; natural disasters; endogenous growth;
    All these keywords.

    JEL classification:

    • O10 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - General
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eus:ce3swp:0214. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/feeusru.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mikhail Pakhnin (email available below). General contact details of provider: https://edirc.repec.org/data/feeusru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.