IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/739.html
   My bibliography  Save this paper

Upper Comonotonicity and Risk Aggregation under Dependence Uncertainty

Author

Listed:
  • De Vecchi, Corrado

    (Center for Mathematical Economics, Bielefeld University)

  • Nendel, Max

    (Center for Mathematical Economics, Bielefeld University)

  • Streicher, Jan

    (Center for Mathematical Economics, Bielefeld University)

Abstract

In this paper, we study dependence uncertainty and the resulting effects on tail risk measures, which play a fundamental role in modern risk management. We introduce the notion of a regular dependence measure, defined on multi-marginal couplings, as a generalization of well-known correlation statistics such as the Pearson correlation. The first main result states that even an arbitrarily small positive dependence between losses can result in perfectly correlated tails beyond a certain threshold and seemingly complete independence before this threshold. In a second step, we focus on the aggregation of individual risks with known marginal distributions by means of arbitrary nondecreasing left-continuous aggregation functions. In this context, we show that under an arbitrarily small positive dependence, the tail risk of the aggregate loss might coincide with the one of perfectly correlated losses. A similar result is derived for expectiles under mild conditions. In a last step, we discuss our results in the context of credit risk, analyzing the potential effects on the value at risk for weighted sums of Bernoulli distributed losses.

Suggested Citation

  • De Vecchi, Corrado & Nendel, Max & Streicher, Jan, 2025. "Upper Comonotonicity and Risk Aggregation under Dependence Uncertainty," Center for Mathematical Economics Working Papers 739, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:739
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/3006176/3006177
    File Function: First Version, 2024
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bignozzi, Valeria & Puccetti, Giovanni & Rüschendorf, Ludger, 2015. "Reducing model risk via positive and negative dependence assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 17-26.
    2. Bernard, Carole & Vanduffel, Steven, 2015. "A new approach to assessing model risk in high dimensions," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 166-178.
    3. Freddy Delbaen, 2013. "A Remark on the Structure of Expectiles," Papers 1307.5881, arXiv.org.
    4. Roberto Fontana & Elisa Luciano & Patrizia Semeraro, 2021. "Model risk in credit risk," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 176-202, January.
    5. Dhaene, Jan & Goovaerts, Marc J., 1996. "Dependency of Risks and Stop-Loss Order1," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 201-212, November.
    6. Bellini, Fabio & Cesarone, Francesco & Colombo, Christian & Tardella, Fabio, 2021. "Risk parity with expectiles," European Journal of Operational Research, Elsevier, vol. 291(3), pages 1149-1163.
    7. Carole Bernard & Corrado De Vecchi & Steven Vanduffel, 2023. "The impact of correlation on (Range) Value-at-Risk," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2023(6), pages 531-564, July.
    8. Marco Scarsini, 1984. "Strong measures of concordance and convergence in probability," Post-Print hal-00542387, HAL.
    9. Ruodu Wang & Liang Peng & Jingping Yang, 2013. "Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities," Finance and Stochastics, Springer, vol. 17(2), pages 395-417, April.
    10. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel, 2017. "Value-at-Risk Bounds With Variance Constraints," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(3), pages 923-959, September.
    11. Max Nendel & Jan Streicher, 2023. "An axiomatic approach to default risk and model uncertainty in rating systems," Papers 2303.08217, arXiv.org, revised Sep 2023.
    12. Paul Embrechts & Giovanni Puccetti & Ludger Rüschendorf & Ruodu Wang & Antonela Beleraj, 2014. "An Academic Response to Basel 3.5," Risks, MDPI, vol. 2(1), pages 1-24, February.
    13. Fabio Bellini & Elena Di Bernardino, 2017. "Risk management with expectiles," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 487-506, May.
    14. Mario Ghossoub & Jesse Hall & David Saunders, 2023. "Maximum Spectral Measures of Risk with Given Risk Factor Marginal Distributions," Mathematics of Operations Research, INFORMS, vol. 48(2), pages 1158-1182, May.
    15. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    16. Fangda Liu & Ruodu Wang, 2021. "A Theory for Measures of Tail Risk," Mathematics of Operations Research, INFORMS, vol. 46(3), pages 1109-1128, August.
    17. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    18. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    19. Denuit, M. & Genest, C. & Marceau, E., 1999. "Stochastic bounds on sums of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 85-104, September.
    20. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    21. Nendel, Max & Streicher, Jan, 2023. "An axiomatic approach to default risk and model uncertainty in rating systems," Journal of Mathematical Economics, Elsevier, vol. 109(C).
    22. Cheung, Ka Chun, 2009. "Upper comonotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 35-40, August.
    23. Marco Scarsini, 1984. "On measures of concordance," Post-Print hal-00542380, HAL.
    24. Henry Lam & Clementine Mottet, 2017. "Tail Analysis Without Parametric Models: A Worst-Case Perspective," Operations Research, INFORMS, vol. 65(6), pages 1696-1711, December.
    25. Bernard, Carole & Jiang, Xiao & Wang, Ruodu, 2014. "Risk aggregation with dependence uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 93-108.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corrado De Vecchi & Max Nendel & Jan Streicher, 2024. "Upper Comonotonicity and Risk Aggregation under Dependence Uncertainty," Papers 2406.19242, arXiv.org.
    2. Lux, Thibaut & Papapantoleon, Antonis, 2019. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 73-83.
    3. Lauzier, Jean-Gabriel & Lin, Liyuan & Wang, Ruodu, 2023. "Pairwise counter-monotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 279-287.
    4. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    5. Edgars Jakobsons & Steven Vanduffel, 2015. "Dependence Uncertainty Bounds for the Expectile of a Portfolio," Risks, MDPI, vol. 3(4), pages 1-25, December.
    6. Rüschendorf, L., 2019. "Analysis of risk bounds in partially specified additive factor models," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 115-121.
    7. Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
    8. Wang, Bin & Wang, Ruodu, 2015. "Extreme negative dependence and risk aggregation," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 12-25.
    9. Takaaki Koike & Liyuan Lin & Ruodu Wang, 2022. "Joint mixability and notions of negative dependence," Papers 2204.11438, arXiv.org, revised Jan 2024.
    10. Yuyu Chen & Liyuan Lin & Ruodu Wang, 2021. "Risk Aggregation under Dependence Uncertainty and an Order Constraint," Papers 2104.07718, arXiv.org, revised Oct 2021.
    11. Mao, Tiantian & Wang, Ruodu, 2015. "On aggregation sets and lower-convex sets," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 170-181.
    12. Chen, Yuyu & Lin, Liyuan & Wang, Ruodu, 2022. "Risk aggregation under dependence uncertainty and an order constraint," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 169-187.
    13. Thibaut Lux & Antonis Papapantoleon, 2016. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Papers 1610.09734, arXiv.org, revised Nov 2018.
    14. Ruodu Wang & Ricardas Zitikis, 2018. "Weak comonotonicity," Papers 1812.04827, arXiv.org, revised Sep 2019.
    15. Wang, Ruodu & Zitikis, Ričardas, 2020. "Weak comonotonicity," European Journal of Operational Research, Elsevier, vol. 282(1), pages 386-397.
    16. Cornilly, D. & Rüschendorf, L. & Vanduffel, S., 2018. "Upper bounds for strictly concave distortion risk measures on moment spaces," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 141-151.
    17. Di Lascio, F. Marta L. & Giammusso, Davide & Puccetti, Giovanni, 2018. "A clustering approach and a rule of thumb for risk aggregation," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 236-248.
    18. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    19. Yichun Chi & Zuo Quan Xu & Sheng Chao Zhuang, 2022. "Distributionally Robust Goal-Reaching Optimization in the Presence of Background Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(3), pages 351-382, August.
    20. Jonathan Ansari & Eva Lutkebohmert, 2024. "Robust Bernoulli mixture models for credit portfolio risk," Papers 2411.11522, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.