IDEAS home Printed from https://ideas.repec.org/a/kap/annfin/v15y2019i3d10.1007_s10436-018-0335-2.html
   My bibliography  Save this article

Optimal demand in a mispriced asymmetric Carr–Geman–Madan–Yor (CGMY) economy

Author

Listed:
  • Winston Buckley

    (Bentley University)

  • Sandun Perera

    (University of Michigan-Flint)

Abstract

We employ a simple numerical scheme to compute optimal portfolios and utilities of informed and uninformed investors in a mispriced Carr–Geman–Madan–Yor (CGMY) Lévy market under information asymmetry using instantaneous centralized moments of returns (ICMR). We also investigate the impact on investors’ demand for stocks and indices at different levels of asymmetric information, mispricing, investment horizon, jump intensity, and volatility. Our simulations not only confirm that uninformed expected demand falls as information asymmetry increases but also offer strong evidence that informed expected demand behaves in a similar manner. In particular, expected demand of informed investors falls whenever information asymmetry exceeds 50%. The investor that demands more of the risky asset maintains that position over the entire investment horizon at each level of mispricing and information asymmetry. The absolute difference in expected demand between the uninformed and informed investors increases with the investment horizon, but decreases with the level of information asymmetry.

Suggested Citation

  • Winston Buckley & Sandun Perera, 2019. "Optimal demand in a mispriced asymmetric Carr–Geman–Madan–Yor (CGMY) economy," Annals of Finance, Springer, vol. 15(3), pages 337-368, September.
  • Handle: RePEc:kap:annfin:v:15:y:2019:i:3:d:10.1007_s10436-018-0335-2
    DOI: 10.1007/s10436-018-0335-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10436-018-0335-2
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10436-018-0335-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
    3. Jérémy Poirot & Peter Tankov, 2006. "Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(4), pages 327-344, December.
    4. Bates, David S, 1991. "The Crash of '87: Was It Expected? The Evidence from Options Markets," Journal of Finance, American Finance Association, vol. 46(3), pages 1009-1044, July.
    5. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components1," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 39-55, October.
    6. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    7. Jun Liu & Francis A. Longstaff & Jun Pan, 2003. "Dynamic Asset Allocation with Event Risk," Journal of Finance, American Finance Association, vol. 58(1), pages 231-259, February.
    8. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    9. Buckley, Winston & Long, Hongwei & Perera, Sandun, 2014. "A jump model for fads in asset prices under asymmetric information," European Journal of Operational Research, Elsevier, vol. 236(1), pages 200-208.
    10. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    11. Paolo Guasoni, 2006. "Asymmetric Information in Fads Models," Finance and Stochastics, Springer, vol. 10(2), pages 159-177, April.
    12. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Working Paper 1159, Economics Department, Queen's University.
    13. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    14. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    15. Bryan Kelly & Alexander Ljungqvist, 2012. "Testing Asymmetric-Information Asset Pricing Models," Review of Financial Studies, Society for Financial Studies, vol. 25(5), pages 1366-1413.
    16. Soeren Asmussen & Dilip Madan & Martijn Pistorius, 2007. "Pricing Equity Default Swaps under an approximation to the CGMY L\'{e}% vy Model," Papers 0711.2807, arXiv.org.
    17. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    18. Shiller, Robert J, 1981. "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?," American Economic Review, American Economic Association, vol. 71(3), pages 421-436, June.
    19. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    20. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    21. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    22. Buckley, Winston S. & Long, Hongwei, 2015. "A discontinuous mispricing model under asymmetric information," European Journal of Operational Research, Elsevier, vol. 243(3), pages 944-955.
    23. Paolo Guasoni, 2006. "Asymmetric Information in Fads Models," Finance and Stochastics, Springer, vol. 10(2), pages 159-177, April.
    24. Filippo Fiorani & Elisa Luciano & Patrizia Semeraro, 2010. "Single and joint default in a structural model with purely discontinuous asset prices," Quantitative Finance, Taylor & Francis Journals, vol. 10(3), pages 249-263.
    25. Fousseni Chabi-Yo, 2008. "Conditioning Information and Variance Bounds on Pricing Kernels with Higher- Order Moments: Theory and Evidence," Review of Financial Studies, Society for Financial Studies, vol. 21(1), pages 181-231, January.
    26. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    27. Ian W. Martin, 2013. "Consumption-Based Asset Pricing with Higher Cumulants," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(2), pages 745-773.
    28. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    29. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    30. Laura Ballotta & Ioannis Kyriakou, 2014. "Monte Carlo Simulation of the CGMY Process and Option Pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(12), pages 1095-1121, December.
    31. Naik, Vasanttilak & Lee, Moon, 1990. "General Equilibrium Pricing of Options on the Market Portfolio with Discontinuous Returns," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 493-521.
    32. Jones, E. Philip, 1984. "Option arbitrage and strategy with large price changes," Journal of Financial Economics, Elsevier, vol. 13(1), pages 91-113, March.
    33. Jakša Cvitanić & Vassilis Polimenis & Fernando Zapatero, 2008. "Optimal portfolio allocation with higher moments," Annals of Finance, Springer, vol. 4(1), pages 1-28, January.
    34. David Easley & Maureen O'hara, 2004. "Information and the Cost of Capital," Journal of Finance, American Finance Association, vol. 59(4), pages 1553-1583, August.
    35. Campbell Harvey & John Liechty & Merrill Liechty & Peter Muller, 2010. "Portfolio selection with higher moments," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 469-485.
    36. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    37. Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    38. LeRoy, Stephen F & Porter, Richard D, 1981. "The Present-Value Relation: Tests Based on Implied Variance Bounds," Econometrica, Econometric Society, vol. 49(3), pages 555-574, May.
    39. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    40. Patrizia Semeraro, 2008. "A Multivariate Variance Gamma Model For Financial Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-18.
    41. Lee, Gemma & Masulis, Ronald W., 2009. "Seasoned equity offerings: Quality of accounting information and expected flotation costs," Journal of Financial Economics, Elsevier, vol. 92(3), pages 443-469, June.
    42. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Varun & Perera, Sandun, 2021. "Managing surges in online demand using bandwidth throttling: An optimal strategy amid the COVID-19 pandemic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    2. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    3. Buckley, Winston S. & Long, Hongwei, 2015. "A discontinuous mispricing model under asymmetric information," European Journal of Operational Research, Elsevier, vol. 243(3), pages 944-955.
    4. Buckley, Winston & Long, Hongwei & Perera, Sandun, 2014. "A jump model for fads in asset prices under asymmetric information," European Journal of Operational Research, Elsevier, vol. 236(1), pages 200-208.
    5. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    6. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    7. Massoud Heidari & Liuren WU, 2002. "Are Interest Rate Derivatives Spanned by the Term Structure of Interest Rates?," Finance 0207013, University Library of Munich, Germany.
    8. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    9. Sun, Qi & Xu, Weidong, 2015. "Pricing foreign equity option with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 89-100.
    10. Kim, In Joon & Kim, Sol, 2004. "Empirical comparison of alternative stochastic volatility option pricing models: Evidence from Korean KOSPI 200 index options market," Pacific-Basin Finance Journal, Elsevier, vol. 12(2), pages 117-142, April.
    11. Ajay Khanna & Dilip Madan, 2004. "Understanding option prices," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 55-63.
    12. Claudia Yeap & Simon S Kwok & S T Boris Choy, 2018. "A Flexible Generalized Hyperbolic Option Pricing Model and Its Special Cases," Journal of Financial Econometrics, Oxford University Press, vol. 16(3), pages 425-460.
    13. Timothy Sharp & Steven Li & David Allen, 2010. "Empirical performance of affine option pricing models: evidence from the Australian index options market," Applied Financial Economics, Taylor & Francis Journals, vol. 20(6), pages 501-514.
    14. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    15. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    16. repec:dau:papers:123456789/1392 is not listed on IDEAS
    17. Feng, Chengxiao & Tan, Jie & Jiang, Zhenyu & Chen, Shuang, 2020. "A generalized European option pricing model with risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    18. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    19. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2009. "Exploring Time-Varying Jump Intensities: Evidence from S&P500 Returns and Options," CIRANO Working Papers 2009s-34, CIRANO.
    20. Liming Feng & Vadim Linetsky, 2008. "Pricing Options in Jump-Diffusion Models: An Extrapolation Approach," Operations Research, INFORMS, vol. 56(2), pages 304-325, April.
    21. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.

    More about this item

    Keywords

    Carr–Geman–Madan–Yor (CGMY)markets; Mispricing models under asymmetric information; Optimal portfolio; Instantaneous centralized moments of returns (ICMR);
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:annfin:v:15:y:2019:i:3:d:10.1007_s10436-018-0335-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.