IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Time-changed GARCH versus the GARJI model for prediction of extreme news events: An empirical study

  • Kao, Lie-Jane
  • Wu, Po-Cheng
  • Lee, Cheng-Few
Registered author(s):

    Chan and Maheu (2002) developed a GARCH-jump mixture model, namely, the GARCH-jump with autoregressive conditional jump intensity (GARJI) model, in which two conditional independent processes, i.e., a diffusion and a compounded Poisson process, are used to describe stock price movements caused by normal and extreme news events, respectively. The resulting model specifically accounts for the volatility clustering and leverage effect, however, it is over-parameterized and provides only an ex post filter for the probability of large price movements occurring. This study proposes and calibrates a more informative and parsimonious model, the VG NGARCH model. Being an extension of the variance-gamma model developed by Madan, Carr, and Chang (1998), the proposed VG NGARCH model imposes an autoregressive structure on the conditional shape parameters, which describes the arrival rates for news with different degrees of impact on price movements, and provides an ex ante probability for the occurrences of large price movements. The performance of the proposed VG NGARCH model is compared with that of the GARJI model using daily stock prices of five financial companies contained in the S&P 500, namely, Bank of America, Wells Fargo, J.P. Morgan Chase, CitiGroup, and AIG, from January 3, 2006 to December 31, 2009. The goodness of fit of the VG NGARCH model and its ability to predict the probabilities of large price movements are demonstrated by comparison with the benchmark GARJI model.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056011000487
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal International Review of Economics & Finance.

    Volume (Year): 21 (2012)
    Issue (Month): 1 ()
    Pages: 115-129

    as
    in new window

    Handle: RePEc:eee:reveco:v:21:y:2012:i:1:p:115-129
    Contact details of provider: Web page: http://www.elsevier.com/locate/inca/620165

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Hentschel, Ludger & Campbell, John, 1992. "No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns," Scholarly Articles 3220232, Harvard University Department of Economics.
    2. Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    3. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, 06.
    4. Andersen, Torben G, 1996. " Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    5. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, 06.
    6. Ross, Stephen A, 1989. " Information and Volatility: The No-Arbitrage Martingale Approach to Timing and Resolution Irrelevancy," Journal of Finance, American Finance Association, vol. 44(1), pages 1-17, March.
    7. Philippe Jorion, 1988. "On Jump Processes in the Foreign Exchange and Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 427-445.
    8. Leeves, Gareth, 2007. "Asymmetric volatility of stock returns during the Asian crisis: Evidence from Indonesia," International Review of Economics & Finance, Elsevier, vol. 16(2), pages 272-286.
    9. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 39-55.
    10. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
    11. Hélyette Geman & Dilip B. Madan & Marc Yor, 2001. "Time Changes for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 79-96.
    12. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    13. John M. Maheu & Thomas H. McCurdy, 2004. "News Arrival, Jump Dynamics, and Volatility Components for Individual Stock Returns," Journal of Finance, American Finance Association, vol. 59(2), pages 755-793, 04.
    14. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
    15. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
    16. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
    17. Bystrom, Hans N. E., 2005. "Extreme value theory and extremely large electricity price changes," International Review of Economics & Finance, Elsevier, vol. 14(1), pages 41-55.
    18. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
    19. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-24, October.
    20. Nirei, Makoto & Sushko, Vladyslav, 2011. "Jumps in foreign exchange rates and stochastic unwinding of carry trades," International Review of Economics & Finance, Elsevier, vol. 20(1), pages 110-127, January.
    21. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    22. Jones, Charles M & Kaul, Gautam & Lipson, Marc L, 1994. "Transactions, Volume, and Volatility," Review of Financial Studies, Society for Financial Studies, vol. 7(4), pages 631-51.
    23. Chan, Wing H & Maheu, John M, 2002. "Conditional Jump Dynamics in Stock Market Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 377-89, July.
    24. Geman, Hélyette & Carr, Peter & Madan, Dilip B. & Yor, Marc, 2003. "Stochastic Volatility for Levy Processes," Economics Papers from University Paris Dauphine 123456789/1392, Paris Dauphine University.
    25. Bali, Rakesh & Guirguis, Hany, 2007. "Extreme observations and non-normality in ARCH and GARCH," International Review of Economics & Finance, Elsevier, vol. 16(3), pages 332-346.
    26. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    27. Robert C. Merton, 1973. "Theory of Rational Option Pricing," Bell Journal of Economics, The RAND Corporation, vol. 4(1), pages 141-183, Spring.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:21:y:2012:i:1:p:115-129. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.