IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v284y2020i3p1190-1200.html
   My bibliography  Save this article

A general control variate method for Lévy models in finance

Author

Listed:
  • Shiraya, Kenichiro
  • Uenishi, Hiroki
  • Yamazaki, Akira

Abstract

This study proposes a new control variate method for Lévy models in finance. Our method generates a process of the control variate whose initial and terminal values coincide with those of the target Lévy model process, with both processes being driven by the same Brownian motion in the simulation. These features efficiently reduce the variance of the Monte Carlo simulation. As a typical application of this method, we provide the calculation scheme for pricing path-dependent exotic options.

Suggested Citation

  • Shiraya, Kenichiro & Uenishi, Hiroki & Yamazaki, Akira, 2020. "A general control variate method for Lévy models in finance," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1190-1200.
  • Handle: RePEc:eee:ejores:v:284:y:2020:i:3:p:1190-1200
    DOI: 10.1016/j.ejor.2020.01.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720300801
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.01.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    2. Shiraya, Kenichiro & Takahashi, Akihiko, 2017. "A general control variate method for multi-dimensional SDEs: An application to multi-asset options under local stochastic volatility with jumps models in finance," European Journal of Operational Research, Elsevier, vol. 258(1), pages 358-371.
    3. Claudia Ribeiro & Nick Webber, 2006. "Correcting for Simulation Bias in Monte Carlo Methods to Value Exotic Options in Models Driven by Levy Processes," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(4), pages 333-352.
    4. Caldana, Ruggero & Fusai, Gianluca, 2013. "A general closed-form spread option pricing formula," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4893-4906.
    5. Yuan Li & Kaimon Miyachi & Kenichiro Shiraya & Akira Yamazaki, 2019. "Approximation Method Using Black-Scholes Formula for Barrier Option Pricing under Lévy Models," CARF F-Series CARF-F-454, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jun 2021.
    6. Fusai, Gianluca & Germano, Guido & Marazzina, Daniele, 2016. "Spitzer identity, Wiener-Hopf factorization and pricing of discretely monitored exotic options," European Journal of Operational Research, Elsevier, vol. 251(1), pages 124-134.
    7. Athanassios N. Avramidis & Pierre L'Ecuyer, 2006. "Efficient Monte Carlo and Quasi-Monte Carlo Option Pricing Under the Variance Gamma Model," Management Science, INFORMS, vol. 52(12), pages 1930-1944, December.
    8. Ruggero Caldana & Gianluca Fusai & Alessandro Gnoatto & Martino Grasselli, 2016. "General closed-form basket option pricing bounds," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 535-554, April.
    9. Fusai, Gianluca & Meucci, Attilio, 2008. "Pricing discretely monitored Asian options under Levy processes," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2076-2088, October.
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    11. Xie, Fei & He, Zhijian & Wang, Xiaoqun, 2019. "An importance sampling-based smoothing approach for quasi-Monte Carlo simulation of discrete barrier options," European Journal of Operational Research, Elsevier, vol. 274(2), pages 759-772.
    12. Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
    13. Mark Broadie & Paul Glasserman & Steven Kou, 1997. "A Continuity Correction for Discrete Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 325-349, October.
    14. Akira Yamazaki, 2016. "Generalized Barndorff-Nielsen And Shephard Model And Discretely Monitored Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-34, June.
    15. Yuji Umezawa & Akira Yamazaki, 2015. "Pricing Path-Dependent Options with Discrete Monitoring under Time-Changed Lévy Processes," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(2), pages 133-161, April.
    16. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2012. "A general control variate method for option pricing under Lévy processes," European Journal of Operational Research, Elsevier, vol. 221(2), pages 368-377.
    17. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
    18. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    2. P. D. Hinds & M. V. Tretyakov, 2022. "Neural variance reduction for stochastic differential equations," Papers 2209.12885, arXiv.org, revised May 2023.
    3. Kenichiro Shiraya & Cong Wang & Akira Yamazaki, 2021. "A general control variate method for time-changed Lévy processes: An application to options pricing," CARF F-Series CARF-F-499, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenichiro Shiraya & Hiroki Uenishi & Akira Yamazaki, 2019. "A General Control Variate Method for Lévy Models in Finance (Published in European Journal of Operational Research.)," CARF F-Series CARF-F-455, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2020.
    2. Kenichiro Shiraya & Cong Wang & Akira Yamazaki, 2021. "A general control variate method for time-changed Lévy processes: An application to options pricing," CARF F-Series CARF-F-499, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Phelan, Carolyn E. & Marazzina, Daniele & Fusai, Gianluca & Germano, Guido, 2018. "Fluctuation identities with continuous monitoring and their application to the pricing of barrier options," European Journal of Operational Research, Elsevier, vol. 271(1), pages 210-223.
    4. Shiraya, Kenichiro & Takahashi, Akihiko, 2017. "A general control variate method for multi-dimensional SDEs: An application to multi-asset options under local stochastic volatility with jumps models in finance," European Journal of Operational Research, Elsevier, vol. 258(1), pages 358-371.
    5. Carolyn E. Phelan & Daniele Marazzina & Gianluca Fusai & Guido Germano, 2017. "Fluctuation identities with continuous monitoring and their application to price barrier options," Papers 1712.00077, arXiv.org.
    6. Xie, Fei & He, Zhijian & Wang, Xiaoqun, 2019. "An importance sampling-based smoothing approach for quasi-Monte Carlo simulation of discrete barrier options," European Journal of Operational Research, Elsevier, vol. 274(2), pages 759-772.
    7. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    8. Pingping Zeng & Yue Kuen Kwok, 2016. "Pricing bounds and approximations for discrete arithmetic Asian options under time-changed Lévy processes," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1375-1391, September.
    9. Carolyn E. Phelan & Daniele Marazzina & Gianluca Fusai & Guido Germano, 2019. "Hilbert transform, spectral filters and option pricing," Annals of Operations Research, Springer, vol. 282(1), pages 273-298, November.
    10. Yuan Li & Kenichiro Shiraya & Yuji Umezawa & Akira Yamazaki, 2022. "Moments of Maximum of Lévy Processes: Application to Barrier and Lookback Option Pricing," CARF F-Series CARF-F-536, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    11. Kahalé, Nabil, 2020. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," European Journal of Operational Research, Elsevier, vol. 287(2), pages 739-748.
    12. Jaehyuk Choi, 2018. "Sum of all Black–Scholes–Merton models: An efficient pricing method for spread, basket, and Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 627-644, June.
    13. Wendong Zheng & Chi Hung Yuen & Yue Kuen Kwok, 2016. "Recursive Algorithms For Pricing Discrete Variance Options And Volatility Swaps Under Time-Changed Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-29, March.
    14. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2012. "A general control variate method for option pricing under Lévy processes," European Journal of Operational Research, Elsevier, vol. 221(2), pages 368-377.
    15. Cui, Zhenyu & Lee, Chihoon & Liu, Yanchu, 2018. "Single-transform formulas for pricing Asian options in a general approximation framework under Markov processes," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1134-1139.
    16. Svetlana Boyarchenko & Sergei Levendorskiä¬ & J. Lars Kyrkby & Zhenyu Cui, 2021. "Sinh-Acceleration For B-Spline Projection With Option Pricing Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(08), pages 1-50, December.
    17. Cai, Ning & Li, Chenxu & Shi, Chao, 2021. "Pricing discretely monitored barrier options: When Malliavin calculus expansions meet Hilbert transforms," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    18. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    19. P. D. Hinds & M. V. Tretyakov, 2022. "Neural variance reduction for stochastic differential equations," Papers 2209.12885, arXiv.org, revised May 2023.
    20. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:284:y:2020:i:3:p:1190-1200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.