IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v13y2006i4p333-352.html
   My bibliography  Save this article

Correcting for Simulation Bias in Monte Carlo Methods to Value Exotic Options in Models Driven by Levy Processes

Author

Listed:
  • Claudia Ribeiro
  • Nick Webber

Abstract

Levy processes can be used to model asset return's distributions. Monte Carlo methods must frequently be used to value path dependent options in these models, but Monte Carlo methods can be prone to considerable simulation bias when valuing options with continuous reset conditions. This paper shows how to correct for this bias for a range of options by generating a sample from the extremes distribution of the Levy process on subintervals. The method uses variance-gamma and normal inverse Gaussian processes. The method gives considerable reductions in bias, so that it becomes feasible to apply variance reduction methods. The method seems to be a very fruitful approach in a framework in which many options do not have analytical solutions.

Suggested Citation

  • Claudia Ribeiro & Nick Webber, 2006. "Correcting for Simulation Bias in Monte Carlo Methods to Value Exotic Options in Models Driven by Levy Processes," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(4), pages 333-352.
  • Handle: RePEc:taf:apmtfi:v:13:y:2006:i:4:p:333-352
    DOI: 10.1080/13504860600658992
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860600658992
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504860600658992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53, January.
    2. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Working Paper 1159, Economics Department, Queen's University.
    3. repec:bla:jfinan:v:59:y:2004:i:3:p:1405-1440 is not listed on IDEAS
    4. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    5. Geman, Helyette, 2002. "Pure jump Levy processes for asset price modelling," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1297-1316, July.
    6. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye, Zhi-Sheng, 2013. "On the conditional increments of degradation processes," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2531-2536.
    2. Kenichiro Shiraya & Hiroki Uenishi & Akira Yamazaki, 2019. "A General Control Variate Method for Lévy Models in Finance (Published in European Journal of Operational Research.)," CARF F-Series CARF-F-455, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2020.
    3. Shiraya, Kenichiro & Uenishi, Hiroki & Yamazaki, Akira, 2020. "A general control variate method for Lévy models in finance," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1190-1200.
    4. Alberto Bueno-Guerrero & Steven P. Clark, 2023. "Option Pricing under a Generalized Black–Scholes Model with Stochastic Interest Rates, Stochastic Strings, and Lévy Jumps," Mathematics, MDPI, vol. 12(1), pages 1-39, December.
    5. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    6. Jos'e E. Figueroa-L'opez & Peter Tankov, 2012. "Small-time asymptotics of stopped L\'evy bridges and simulation schemes with controlled bias," Papers 1203.2355, arXiv.org, revised Jul 2014.
    7. Lee, Hangsuck & Ha, Hongjun & Kong, Byungdoo & Lee, Minha, 2024. "Valuing three-asset barrier options and autocallable products via exit probabilities of Brownian bridge," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    8. Wang, Chuan-Ju & Kao, Ming-Yang, 2016. "Optimal search for parameters in Monte Carlo simulation for derivative pricing," European Journal of Operational Research, Elsevier, vol. 249(2), pages 683-690.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    2. Fiorani, Filo, 2004. "Option Pricing Under the Variance Gamma Process," MPRA Paper 15395, University Library of Munich, Germany.
    3. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
    4. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    5. Steven Heston, 2007. "A model of discontinuous interest rate behavior, yield curves, and volatility," Review of Derivatives Research, Springer, vol. 10(3), pages 205-225, December.
    6. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    7. Fabozzi, Frank J. & Leccadito, Arturo & Tunaru, Radu S., 2014. "Extracting market information from equity options with exponential Lévy processes," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 125-141.
    8. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    9. Lingyan Cao & Zheng-Feng Guo, 2012. "A Comparison Of Gradient Estimation Techniques For European Call Options," Accounting & Taxation, The Institute for Business and Finance Research, vol. 4(1), pages 75-81.
    10. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.
    11. Roman Ivanov, 2015. "The distribution of the maximum of a variance gamma process and path-dependent option pricing," Finance and Stochastics, Springer, vol. 19(4), pages 979-993, October.
    12. Laura Ballota & Griselda Deelstra & Grégory Rayée, 2015. "Quanto Implied Correlation in a Multi-Lévy Framework," Working Papers ECARES ECARES 2015-36, ULB -- Universite Libre de Bruxelles.
    13. Erdinc Akyildirim & Alper A. Hekimoglu & Ahmet Sensoy & Frank J. Fabozzi, 2023. "Extending the Merton model with applications to credit value adjustment," Annals of Operations Research, Springer, vol. 326(1), pages 27-65, July.
    14. Ole E. Barndorff-Nielsen & Neil Shephard, 2012. "Basics of Levy processes," Economics Papers 2012-W06, Economics Group, Nuffield College, University of Oxford.
    15. Kleinert, Hagen, 2002. "Option pricing from path integral for non-Gaussian fluctuations. Natural martingale and application to truncated Lèvy distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 217-242.
    16. Marco Bee & Maria Michela Dickson & Flavio Santi, 2018. "Likelihood-based risk estimation for variance-gamma models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 69-89, March.
    17. Lorenzo Mercuri & Fabio Bellini, 2014. "Option Pricing in a Dynamic Variance-Gamma Model," Papers 1405.7342, arXiv.org.
    18. Salem, Marwa Belhaj & Fouladirad, Mitra & Deloux, Estelle, 2022. "Variance Gamma process as degradation model for prognosis and imperfect maintenance of centrifugal pumps," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    19. George Bouzianis & Lane P. Hughston, 2019. "Determination Of The Lévy Exponent In Asset Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, February.
    20. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:13:y:2006:i:4:p:333-352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.