IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v326y2023i1d10.1007_s10479-023-05289-3.html
   My bibliography  Save this article

Extending the Merton model with applications to credit value adjustment

Author

Listed:
  • Erdinc Akyildirim

    (University of Bradford
    Bogazici University
    University of Zurich)

  • Alper A. Hekimoglu

    (European Investment Bank (EIB))

  • Ahmet Sensoy

    (Bilkent University
    Lebanese American University)

  • Frank J. Fabozzi

    (EDHEC Business School)

Abstract

Following the global financial crisis, the measurement of counterparty credit risk has become an essential part of the Basel III accord with credit value adjustment being one of the most prominent components of this concept. In this study, we extend the Merton structural credit risk model for counterparty credit risk calculation in the context of calculating the credit value adjustment mainly by estimating the probability of default. We improve the Merton model in a variance-convoluted-gamma environment to include default dependence between counterparties through a linear factor decomposition framework. This allows one to tackle dependence through a systematic common component. Our set-up allows for easier, faster and more accurate fitting for the credit spread. Results confirm that use of the variance-gamma-convolution clearly solves the vanishing credit spread problem for short time-to-maturity or low leverage cases compared to a Brownian motion environment and its modifications.

Suggested Citation

  • Erdinc Akyildirim & Alper A. Hekimoglu & Ahmet Sensoy & Frank J. Fabozzi, 2023. "Extending the Merton model with applications to credit value adjustment," Annals of Operations Research, Springer, vol. 326(1), pages 27-65, July.
  • Handle: RePEc:spr:annopr:v:326:y:2023:i:1:d:10.1007_s10479-023-05289-3
    DOI: 10.1007/s10479-023-05289-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05289-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05289-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. BRIGO, Damiano & VRINS, Frédéric, 2018. "Disentangling wrong-way risk: pricing credit valuation adjustment via change of measures," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1154-1164.
    3. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components1," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 39-55, October.
    4. Bonollo, Michele & Di Persio, Luca & Oliva, Immacolata, 2020. "A quantization approach to the counterparty credit exposure estimation," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 335-356.
    5. Elisa Luciano & Wim Schoutens, 2006. "A multivariate jump-driven financial asset model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 385-402.
    6. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Working Paper 1159, Economics Department, Queen's University.
    7. Gemmill, Gordon & Marra, Miriam, 2019. "Explaining CDS prices with Merton’s model before and after the Lehman default," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 93-109.
    8. F. Antonelli & A. Ramponi & S. Scarlatti, 2021. "CVA and vulnerable options pricing by correlation expansions," Annals of Operations Research, Springer, vol. 299(1), pages 401-427, April.
    9. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    10. Ballotta, Laura & Deelstra, Griselda & Rayée, Grégory, 2017. "Multivariate FX models with jumps: Triangles, Quantos and implied correlation," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1181-1199.
    11. Yifan Yang & Frank J. Fabozzi & Michele Leonardo Bianchi, 2015. "Bilateral counterparty risk valuation adjustment with wrong way risk on collateralized commodity counterparty," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-31.
    12. Ballotta, Laura & Fusai, Gianluca & Loregian, Angela & Perez, M. Fabricio, 2019. "Estimation of Multivariate Asset Models with Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(5), pages 2053-2083, October.
    13. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    14. Filippo Fiorani & Elisa Luciano & Patrizia Semeraro, 2010. "Single and joint default in a structural model with purely discontinuous asset prices," Quantitative Finance, Taylor & Francis Journals, vol. 10(3), pages 249-263.
    15. Fabozzi, Frank J. & Leccadito, Arturo & Tunaru, Radu S., 2014. "Extracting market information from equity options with exponential Lévy processes," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 125-141.
    16. Laura Ballotta & Gianluca Fusai, 2015. "Counterparty credit risk in a multivariate structural model with jumps," Finance, Presses universitaires de Grenoble, vol. 36(1), pages 39-74.
    17. Maria Vassalou & Yuhang Xing, 2004. "Default Risk in Equity Returns," Journal of Finance, American Finance Association, vol. 59(2), pages 831-868, April.
    18. Laura Ballotta & Efrem Bonfiglioli, 2016. "Multivariate asset models using Lévy processes and applications," The European Journal of Finance, Taylor & Francis Journals, vol. 22(13), pages 1320-1350, October.
    19. Jan Ericsson & Joel Reneby, 2005. "Estimating Structural Bond Pricing Models," The Journal of Business, University of Chicago Press, vol. 78(2), pages 707-735, March.
    20. Ronn, Ehud I & Verma, Avinash K, 1986. "Pricing Risk-Adjusted Deposit Insurance: An Option-Based Model," Journal of Finance, American Finance Association, vol. 41(4), pages 871-895, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Ballota & Griselda Deelstra & Grégory Rayée, 2015. "Quanto Implied Correlation in a Multi-Lévy Framework," Working Papers ECARES ECARES 2015-36, ULB -- Universite Libre de Bruxelles.
    2. Gian Luca Tassinari & Corrado Corradi, 2013. "Pricing equity and debt tranches of collateralized funds of hedge fund obligations: An approach based on stochastic time change and Esscher-transformed martingale measure," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1991-2010, December.
    3. Hatem Ben‐Ameur & Rim Chérif & Bruno Rémillard, 2020. "Dynamic programming for valuing American options under a variance‐gamma process," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1548-1561, October.
    4. Ballotta, Laura & Fusai, Gianluca & Marazzina, Daniele, 2019. "Integrated structural approach to Credit Value Adjustment," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1143-1157.
    5. Winston Buckley & Sandun Perera, 2019. "Optimal demand in a mispriced asymmetric Carr–Geman–Madan–Yor (CGMY) economy," Annals of Finance, Springer, vol. 15(3), pages 337-368, September.
    6. Roman V. Ivanov, 2018. "Option Pricing In The Variance-Gamma Model Under The Drift Jump," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-19, June.
    7. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    8. Roman Ivanov, 2015. "The distribution of the maximum of a variance gamma process and path-dependent option pricing," Finance and Stochastics, Springer, vol. 19(4), pages 979-993, October.
    9. Fiorani, Filo, 2004. "Option Pricing Under the Variance Gamma Process," MPRA Paper 15395, University Library of Munich, Germany.
    10. Marco Bee & Maria Michela Dickson & Flavio Santi, 2018. "Likelihood-based risk estimation for variance-gamma models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 69-89, March.
    11. Salem, Marwa Belhaj & Fouladirad, Mitra & Deloux, Estelle, 2022. "Variance Gamma process as degradation model for prognosis and imperfect maintenance of centrifugal pumps," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    12. George Bouzianis & Lane P. Hughston, 2019. "Determination Of The Lévy Exponent In Asset Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, February.
    13. Liming Feng & Vadim Linetsky, 2008. "Pricing Options in Jump-Diffusion Models: An Extrapolation Approach," Operations Research, INFORMS, vol. 56(2), pages 304-325, April.
    14. Athanassios N. Avramidis & Pierre L'Ecuyer, 2006. "Efficient Monte Carlo and Quasi-Monte Carlo Option Pricing Under the Variance Gamma Model," Management Science, INFORMS, vol. 52(12), pages 1930-1944, December.
    15. Chan, Tat Lung (Ron), 2020. "Hedging and pricing early-exercise options with complex fourier series expansion," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    16. Afik, Zvika & Arad, Ohad & Galil, Koresh, 2016. "Using Merton model for default prediction: An empirical assessment of selected alternatives," Journal of Empirical Finance, Elsevier, vol. 35(C), pages 43-67.
    17. Ivanov Roman V., 2018. "On risk measuring in the variance-gamma model," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 23-33, January.
    18. Bartram, Sohnke M. & Brown, Gregory W. & Hund, John E., 2007. "Estimating systemic risk in the international financial system," Journal of Financial Economics, Elsevier, vol. 86(3), pages 835-869, December.
    19. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    20. Holly Brannelly & Andrea Macrina & Gareth W. Peters, 2021. "Stochastic measure distortions induced by quantile processes for risk quantification and valuation," Papers 2201.02045, arXiv.org.

    More about this item

    Keywords

    Finance; Structural credit risk; Merton model; Variance-gamma process; Credit value adjustment;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:326:y:2023:i:1:d:10.1007_s10479-023-05289-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.