IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

A multivariate jump-driven financial asset model

  • Elisa Luciano
  • Wim Schoutens

We discuss a Levy multivariate model for financial assets which incorporates jumps, skewness, kurtosis and stochastic volatility. We use it to describe the behaviour of a series of stocks or indexes and to study a multi-firm, value-based default model. Starting from an independent Brownian world, we introduce jumps and other deviations from normality, including non-Gaussian dependence. We use a stochastic time-change technique and provide the details for a Gamma change. The main feature of the model is the fact that—opposite to other, non-jointly Gaussian settings—its risk-neutral dependence can be calibrated from univariate derivative prices, providing a surprisingly good fit.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Quantitative Finance.

Volume (Year): 6 (2006)
Issue (Month): 5 ()
Pages: 385-402

in new window

Handle: RePEc:taf:quantf:v:6:y:2006:i:5:p:385-402
Contact details of provider: Web page:

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. U. Cherubini & E. Luciano, 2002. "Bivariate option pricing with copulas," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(2), pages 69-85.
  2. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 39-55.
  3. Hayne E. Leland., 1994. "Corporate Debt Value, Bond Covenants, and Optimal Capital Structure," Research Program in Finance Working Papers RPF-233, University of California at Berkeley.
  4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  5. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-70, May.
  6. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
  7. Longstaff, Francis A & Schwartz, Eduardo S, 1995. " A Simple Approach to Valuing Risky Fixed and Floating Rate Debt," Journal of Finance, American Finance Association, vol. 50(3), pages 789-819, July.
  8. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  9. Chunsheng Zhou, 1997. "A jump-diffusion approach to modeling credit risk and valuing defaultable securities," Finance and Economics Discussion Series 1997-15, Board of Governors of the Federal Reserve System (U.S.).
  10. Duffie, Darrell & Lando, David, 2001. "Term Structures of Credit Spreads with Incomplete Accounting Information," Econometrica, Econometric Society, vol. 69(3), pages 633-64, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:6:y:2006:i:5:p:385-402. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.