IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v299y2021i1d10.1007_s10479-019-03367-z.html
   My bibliography  Save this article

CVA and vulnerable options pricing by correlation expansions

Author

Listed:
  • F. Antonelli

    (University of L’Aquila)

  • A. Ramponi

    (University of Roma - Tor Vergata)

  • S. Scarlatti

    (University of Roma - Tor Vergata)

Abstract

We consider the problem of computing the credit value adjustment (CVA) of a European option in presence of the wrong way risk in a default intensity setting. Namely we model the asset price evolution as solution to a linear equation that might depend on different stochastic factors and we provide an approximate evaluation of the option’s price, by exploiting a correlation expansion approach, introduced in Antonelli and Scarlatti (Finance Stoch 13:269–303, 2009). We also extend our theoretical analysis to include some further value adjustments, for instance due to collateralization and funding costs. Finally, in the CVA case, we compare the numerical performance of our method with the one recently proposed by Brigo and Vrins (Eur J Oper Res 269:1154–1164, 2018) and Brigo et al. (Innovations in insurance, risk and asset management, WSPC proceedings, 2018), in the case of a call option driven by a GBM correlated with a CIR default intensity. We additionally compare with the numerical evaluations obtained by other methods.

Suggested Citation

  • F. Antonelli & A. Ramponi & S. Scarlatti, 2021. "CVA and vulnerable options pricing by correlation expansions," Annals of Operations Research, Springer, vol. 299(1), pages 401-427, April.
  • Handle: RePEc:spr:annopr:v:299:y:2021:i:1:d:10.1007_s10479-019-03367-z
    DOI: 10.1007/s10479-019-03367-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03367-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03367-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Adrian Prayoga & Nicolas Privault, 2017. "Pricing CIR Yield Options by Conditional Moment Matching," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(1), pages 19-38, March.
    2. Michael Pykhtin & Dan Rosen, 2010. "Pricing counterparty risk at the trade level and CVA allocations," Finance and Economics Discussion Series 2010-10, Board of Governors of the Federal Reserve System (U.S.).
    3. Hull, John & White, Alan, 1995. "The impact of default risk on the prices of options and other derivative securities," Journal of Banking & Finance, Elsevier, vol. 19(2), pages 299-322, May.
    4. BRIGO, Damiano & VRINS, Frédéric, 2018. "Disentangling wrong-way risk: pricing credit valuation adjustment via change of measures," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1154-1164.
    5. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    6. Huawei Niu & Dingcheng Wang, 2016. "Pricing vulnerable options with correlated jump-diffusion processes depending on various states of the economy," Quantitative Finance, Taylor & Francis Journals, vol. 16(7), pages 1129-1145, July.
    7. Fabio Antonelli & Sergio Scarlatti, 2009. "Pricing options under stochastic volatility: a power series approach," Finance and Stochastics, Springer, vol. 13(2), pages 269-303, April.
    8. Lie-Jane Kao, 2016. "Credit valuation adjustment of cap and floor with counterparty risk: a structural pricing model for vulnerable European options," Review of Derivatives Research, Springer, vol. 19(1), pages 41-64, April.
    9. F. Antonelli & A. Ramponi & S. Scarlatti, 2010. "Exchange option pricing under stochastic volatility: a correlation expansion," Review of Derivatives Research, Springer, vol. 13(1), pages 45-73, April.
    10. Klein, Peter, 1996. "Pricing Black-Scholes options with correlated credit risk," Journal of Banking & Finance, Elsevier, vol. 20(7), pages 1211-1229, August.
    11. F. Antonelli & A. Ramponi & S. Scarlatti, 2016. "Random Time Forward-Starting Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-25, December.
    12. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    13. Duffie, Darrell & Huang, Ming, 1996. "Swap Rates and Credit Quality," Journal of Finance, American Finance Association, vol. 51(3), pages 921-949, July.
    14. Lihui Tian & Guanying Wang & Xingchun Wang & Yongjin Wang, 2014. "Pricing Vulnerable Options with Correlated Credit Risk Under Jump‐Diffusion Processes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(10), pages 957-979, October.
    15. Johnson, Herb & Stulz, Rene, 1987. "The Pricing of Options with Default Risk," Journal of Finance, American Finance Association, vol. 42(2), pages 267-280, June.
    16. Fard, Farzad Alavi, 2015. "Analytical pricing of vulnerable options under a generalized jump–diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 19-28.
    17. Rabinovitch, Ramon, 1989. "Pricing Stock and Bond Options when the Default-Free Rate is Stochastic," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(4), pages 447-457, December.
    18. Damiano Brigo & Cristin Buescu & Marek Rutkowski, 2016. "Funding, repo and credit inclusive valuation as modified option pricing," Papers 1602.05998, arXiv.org, revised Jun 2017.
    19. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    20. Damiano Brigo & Thomas Hvolby & Frédéric Vrins, 2018. "Wrong-Way Risk Adjusted Exposure: Analytical Approximations for Options in Default Intensity Models," World Scientific Book Chapters, in: Kathrin Glau & Daniël Linders & Aleksey Min & Matthias Scherer & Lorenz Schneider & Rudi Zagst (ed.), Innovations in Insurance, Risk- and Asset Management, chapter 2, pages 27-45, World Scientific Publishing Co. Pte. Ltd..
    21. Agostino Capponi & Stefano Pagliarani & Tiziano Vargiolu, 2014. "Pricing vulnerable claims in a Lévy-driven model," Finance and Stochastics, Springer, vol. 18(4), pages 755-789, October.
    22. Lijun Bo & Agostino Capponi & Peng‐Chu Chen, 2019. "Credit portfolio selection with decaying contagion intensities," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 137-173, January.
    23. Klein, Peter & Inglis, Michael, 2001. "Pricing vulnerable European options when the option's payoff can increase the risk of financial distress," Journal of Banking & Finance, Elsevier, vol. 25(5), pages 993-1012, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alòs, Elisa & Antonelli, Fabio & Ramponi, Alessandro & Scarlatti, Sergio, 2023. "CVA in fractional and rough volatility models," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    2. Gechun Liang & Xingchun Wang, 2021. "Pricing vulnerable options in a hybrid credit risk model driven by Heston–Nandi GARCH processes," Review of Derivatives Research, Springer, vol. 24(1), pages 1-30, April.
    3. Erdinc Akyildirim & Alper A. Hekimoglu & Ahmet Sensoy & Frank J. Fabozzi, 2023. "Extending the Merton model with applications to credit value adjustment," Annals of Operations Research, Springer, vol. 326(1), pages 27-65, July.
    4. Xingchun Wang, 2022. "Valuing fade-in options with default risk in Heston–Nandi GARCH models," Review of Derivatives Research, Springer, vol. 25(1), pages 1-22, April.
    5. E. Alòs & F. Antonelli & A. Ramponi & S. Scarlatti, 2021. "Cva And Vulnerable Options In Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-34, March.
    6. Elisa Al`os & Fabio Antonelli & Alessandro Ramponi & Sergio Scarlatti, 2022. "CVA in fractional and rough volatility models," Papers 2204.11554, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonelli, Fabio & Ramponi, Alessandro & Scarlatti, Sergio, 2022. "Approximate value adjustments for European claims," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1149-1161.
    2. Gechun Liang & Xingchun Wang, 2021. "Pricing vulnerable options in a hybrid credit risk model driven by Heston–Nandi GARCH processes," Review of Derivatives Research, Springer, vol. 24(1), pages 1-30, April.
    3. E. Alòs & F. Antonelli & A. Ramponi & S. Scarlatti, 2021. "Cva And Vulnerable Options In Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-34, March.
    4. Wang, Xingchun, 2020. "Valuation of Asian options with default risk under GARCH models," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 27-40.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Ma, Chaoqun & Ma, Zonggang & Xiao, Shisong, 2019. "A closed-form pricing formula for vulnerable European options under stochastic yield spreads and interest rates," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 59-68.
    7. Jeon, Junkee & Kim, Geonwoo, 2019. "Pricing of vulnerable options with early counterparty credit risk," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 645-656.
    8. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    9. Geonwoo Kim, 2020. "Valuation of Exchange Option with Credit Risk in a Hybrid Model," Mathematics, MDPI, vol. 8(11), pages 1-11, November.
    10. Li, Gang & Zhang, Chu, 2019. "Counterparty credit risk and derivatives pricing," Journal of Financial Economics, Elsevier, vol. 134(3), pages 647-668.
    11. Fard, Farzad Alavi, 2015. "Analytical pricing of vulnerable options under a generalized jump–diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 19-28.
    12. Xie, Yurong & Deng, Guohe, 2022. "Vulnerable European option pricing in a Markov regime-switching Heston model with stochastic interest rate," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    13. Elisa Al`os & Fabio Antonelli & Alessandro Ramponi & Sergio Scarlatti, 2022. "CVA in fractional and rough volatility models," Papers 2204.11554, arXiv.org.
    14. Che Guo & Xingchun Wang, 2022. "Pricing vulnerable options under correlated skew Brownian motions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 852-867, May.
    15. Alòs, Elisa & Antonelli, Fabio & Ramponi, Alessandro & Scarlatti, Sergio, 2023. "CVA in fractional and rough volatility models," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    16. Wang, Xingchun, 2021. "Valuation of options on the maximum of two prices with default risk under GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    17. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    18. Lie-Jane Kao, 2016. "Credit valuation adjustment of cap and floor with counterparty risk: a structural pricing model for vulnerable European options," Review of Derivatives Research, Springer, vol. 19(1), pages 41-64, April.
    19. Huang, Shoude & Guo, Xunxiang, 2022. "Valuation of European-style vulnerable options under the non-affine stochastic volatility and double exponential jump," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    20. Wang, Heqian & Zhang, Jiayi & Zhou, Ke, 2022. "On pricing of vulnerable barrier options and vulnerable double barrier options," Finance Research Letters, Elsevier, vol. 44(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:299:y:2021:i:1:d:10.1007_s10479-019-03367-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.