IDEAS home Printed from https://ideas.repec.org/p/cfi/fseres/cf536.html
   My bibliography  Save this paper

Moments of Maximum of Lévy Processes: Application to Barrier and Lookback Option Pricing

Author

Listed:
  • Yuan Li

    (Graduate School of Economics, University of Tokyo)

  • Kenichiro Shiraya

    (Graduate School of Economics, University of Tokyo)

  • Yuji Umezawa
  • Akira Yamazaki

    (Graduate School of Business Administration, Hosei University)

Abstract

We propose an analytical method to calculate mixed moments between the terminal value and the maximum of a Lévy process. The method derives the moments directly from the Wiener-Hopf factors without finding density or characteristic functions. The advantage of this method is that it is computationally fast and stable. Furthermore, it can be applied to a wide class of Lévy processes. Numerical experiments show that our method provides sufficiently accurate values of the moments. We then apply it to a Monte Carlo simulation for the pricing of barrier and lookback options. The results show that our simulation method can greatly reduce the time discretization error.

Suggested Citation

  • Yuan Li & Kenichiro Shiraya & Yuji Umezawa & Akira Yamazaki, 2022. "Moments of Maximum of Lévy Processes: Application to Barrier and Lookback Option Pricing," CARF F-Series CARF-F-536, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  • Handle: RePEc:cfi:fseres:cf536
    as

    Download full text from publisher

    File URL: https://www.carf.e.u-tokyo.ac.jp/wp/wp-content/uploads/2022/03/F536.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Kenichiro Shiraya & Cong Wang & Akira Yamazaki, 2021. "A general control variate method for time-changed Lévy processes: An application to options pricing," CARF F-Series CARF-F-499, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    4. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    5. Kenichiro Shiraya & Hiroki Uenishi & Akira Yamazaki, 2019. "A General Control Variate Method for Lévy Models in Finance (Published in European Journal of Operational Research.)," CARF F-Series CARF-F-455, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2020.
    6. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    7. repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
    8. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    9. Akira Yamazaki, 2014. "Pricing average options under time-changed Lévy processes," Review of Derivatives Research, Springer, vol. 17(1), pages 79-111, April.
    10. Fusai, Gianluca & Meucci, Attilio, 2008. "Pricing discretely monitored Asian options under Levy processes," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2076-2088, October.
    11. Takaaki Ozeki & Yuji Umezawa & Akira Yamazaki & Daisuke Yoshikawa, 2011. "An extension of CreditGrades model approach with Lévy processes," Quantitative Finance, Taylor & Francis Journals, vol. 11(12), pages 1825-1836.
    12. Henrik Jönsson & Wim Schoutens, 2008. "Single name credit default swaptions meet single sided jump models," Review of Derivatives Research, Springer, vol. 11(1), pages 153-169, March.
    13. Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
    14. Yuji Umezawa & Akira Yamazaki, 2015. "Pricing Path-Dependent Options with Discrete Monitoring under Time-Changed Lévy Processes," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(2), pages 133-161, April.
    15. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wendong Zheng & Chi Hung Yuen & Yue Kuen Kwok, 2016. "Recursive Algorithms For Pricing Discrete Variance Options And Volatility Swaps Under Time-Changed Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-29, March.
    2. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    3. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    4. Jean-Philippe Aguilar, 2021. "The value of power-related options under spectrally negative Lévy processes," Review of Derivatives Research, Springer, vol. 24(2), pages 173-196, July.
    5. Fenglong Guo, 2025. "Pricing Vulnerable Options With Variance Gamma Systematic and Idiosyncratic Factors by Laplace Transform Inversion," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 45(1), pages 47-76, January.
    6. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
    7. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    8. Xu Guo & Yutian Li, 2016. "Valuation of American options under the CGMY model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1529-1539, October.
    9. Cao, Wenbin & Guernsey, Scott B. & Linn, Scott C., 2018. "Evidence of infinite and finite jump processes in commodity futures prices: Crude oil and natural gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 629-641.
    10. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    11. Jean-Philippe Aguilar, 2019. "The value of power-related options under spectrally negative L\'evy processes," Papers 1910.07971, arXiv.org, revised Jan 2021.
    12. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    13. Kao, Lie-Jane & Wu, Po-Cheng & Lee, Cheng-Few, 2012. "Time-changed GARCH versus the GARJI model for prediction of extreme news events: An empirical study," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 115-129.
    14. Jakša Cvitanić & Vassilis Polimenis & Fernando Zapatero, 2008. "Optimal portfolio allocation with higher moments," Annals of Finance, Springer, vol. 4(1), pages 1-28, January.
    15. Pawel J. Szerszen, 2009. "Bayesian analysis of stochastic volatility models with Lévy jumps: application to risk analysis," Finance and Economics Discussion Series 2009-40, Board of Governors of the Federal Reserve System (U.S.).
    16. Jing-zhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time-Changed Levy Processes," Econometric Society 2004 North American Winter Meetings 405, Econometric Society.
    17. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    18. Bates, David S., 2012. "U.S. stock market crash risk, 1926–2010," Journal of Financial Economics, Elsevier, vol. 105(2), pages 229-259.
    19. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    20. Kenichiro Shiraya & Hiroki Uenishi & Akira Yamazaki, 2019. "A General Control Variate Method for Lévy Models in Finance (Published in European Journal of Operational Research.)," CARF F-Series CARF-F-455, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/catokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.