IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v79y2009i9p2759-2766.html
   My bibliography  Save this article

Modelling the financial risk associated with U.S. movie box office earnings

Author

Listed:
  • Bi, Guang
  • Giles, David E.

Abstract

In this paper we use extreme value theory to model the U.S. movie box office returns, using weekly data for the period January 1982 to September 2006. The Peak over Threshold method is used to fit the Generalized Pareto distribution to the tails of the distributions of both positive weekly returns and negative returns. Tail risk measures such as value at risk and expected shortfall are computed using maximum likelihood methods. These measures can be used as indicators for the film distributors in the preparation of movie prints, or as references for actual or potential investors in the movie industry.

Suggested Citation

  • Bi, Guang & Giles, David E., 2009. "Modelling the financial risk associated with U.S. movie box office earnings," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2759-2766.
  • Handle: RePEc:eee:matcom:v:79:y:2009:i:9:p:2759-2766
    DOI: 10.1016/j.matcom.2008.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475408001754
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2008.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    2. ROCKINGER, Michael & JONDEAU, Eric, 1999. "The Tail Behavior of Stock Returns: Emerging versus Mature Markets," HEC Research Papers Series 668, HEC Paris.
    3. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    4. repec:adr:anecst:y:2000:i:60:p:10 is not listed on IDEAS
    5. Jon Danielsson & Casper G. De Vries, 2000. "Value-at-Risk and Extreme Returns," Annals of Economics and Statistics, GENES, issue 60, pages 239-270.
    6. Gencay, Ramazan & Selcuk, Faruk, 2006. "Overnight borrowing, interest rates and extreme value theory," European Economic Review, Elsevier, vol. 50(3), pages 547-563, April.
    7. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    8. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
    9. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jordi McKenzie, 2023. "The economics of movies (revisited): A survey of recent literature," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 480-525, April.
    2. Ledermann, Daniel & Alexander, Carol, 2012. "Further properties of random orthogonal matrix simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 83(C), pages 56-79.
    3. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Abhay K. & Allen, David E. & Robert, Powell J., 2013. "Extreme market risk and extreme value theory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 310-328.
    2. Allen, David E. & Singh, Abhay K. & Powell, Robert J., 2013. "EVT and tail-risk modelling: Evidence from market indices and volatility series," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 355-369.
    3. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    4. Cifter, Atilla, 2011. "Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2356-2367.
    5. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    6. Fong Chan, Kam & Gray, Philip, 2006. "Using extreme value theory to measure value-at-risk for daily electricity spot prices," International Journal of Forecasting, Elsevier, vol. 22(2), pages 283-300.
    7. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    8. Hussain, Saiful Izzuan & Li, Steven, 2018. "The dependence structure between Chinese and other major stock markets using extreme values and copulas," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 421-437.
    9. Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
    10. Karmakar, Madhusudan & Shukla, Girja K., 2015. "Managing extreme risk in some major stock markets: An extreme value approach," International Review of Economics & Finance, Elsevier, vol. 35(C), pages 1-25.
    11. Małgorzata Just & Krzysztof Echaust, 2021. "An Optimal Tail Selection in Risk Measurement," Risks, MDPI, vol. 9(4), pages 1-16, April.
    12. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    13. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    14. Ahmed, Rizwan & Chaudhry, Sajid M. & Kumpamool, Chamaiporn & Benjasak, Chonlakan, 2022. "Tail risk, systemic risk and spillover risk of crude oil and precious metals," Energy Economics, Elsevier, vol. 112(C).
    15. Cerović Julija & Lipovina-Božović Milena & Vujošević Saša, 2015. "A Comparative Analysis of Value at Risk Measurement on Emerging Stock Markets: Case of Montenegro," Business Systems Research, Sciendo, vol. 6(1), pages 36-55, March.
    16. Gu, Zhiye & Ibragimov, Rustam, 2018. "The “Cubic Law of the Stock Returns” in emerging markets," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 182-190.
    17. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    18. Muteba Mwamba, John W. & Hammoudeh, Shawkat & Gupta, Rangan, 2017. "Financial tail risks in conventional and Islamic stock markets: A comparative analysis," Pacific-Basin Finance Journal, Elsevier, vol. 42(C), pages 60-82.
    19. Ozaki, Vitor Augusto & Olinda, Ricardo & Faria, Priscila Neves & Campos, Rogério Costa, 2014. "Estimation of the Agricultural Probability of Loss: evidence for soybean in Paraná State," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 52(1), January.
    20. Evis Këllezi & Manfred Gilli, 2000. "Extreme Value Theory for Tail-Related Risk Measures," FAME Research Paper Series rp18, International Center for Financial Asset Management and Engineering.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:79:y:2009:i:9:p:2759-2766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.