IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

EVT and tail-risk modelling: Evidence from market indices and volatility series

  • Allen, David E.
  • Singh, Abhay K.
  • Powell, Robert J.

Value-at-Risk (VaR) has become the universally accepted risk metric adopted internationally under the Basel Accords for banking industry internal control, capital adequacy and regulatory reporting. The recent extreme financial market events such as the Global Financial Crisis (GFC) commencing in 2007 and the following developments in European markets mean that there is a great deal of attention paid to risk measurement and risk hedging. In particular, to risk indices and attached derivatives as hedges for equity market risk. The techniques used to model tail risk such as VaR have attracted criticism for their inability to model extreme market conditions. In this paper we discuss tail specific distribution based Extreme Value Theory (EVT) and evaluate different methods that may be used to calculate VaR ranging from well known econometrics models of GARCH and its variants to EVT based models which focus specifically on the tails of the distribution. We apply Univariate Extreme Value Theory to model extreme market risk for the FTSE100 UK Index and S&P-500 US markets indices plus their volatility indices. We show with empirical evidence that EVT can be successfully applied to financial market return series for predicting static VaR, CVaR or Expected Shortfall (ES) and also daily VaR and ES using a GARCH(1,1) and EVT based dynamic approach to these various indices. The behaviour of these indices in their tails have implications for hedging strategies in extreme market conditions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal The North American Journal of Economics and Finance.

Volume (Year): 26 (2013)
Issue (Month): C ()
Pages: 355-369

in new window

Handle: RePEc:eee:ecofin:v:26:y:2013:i:c:p:355-369
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Society for Computational Economics, vol. 27(2), pages 207-228, May.
  2. Elias G. Carayannis & Aris Kaloudis & åge Mariussen, 2008. "Introduction," Chapters, in: Diversity in the Knowledge Economy and Society, chapter 1 Edward Elgar.
  3. Jon DANIELSSON & Casper G. DE VRIES, 2000. "Value-at-Risk and Extreme Returns," Annales d'Economie et de Statistique, ENSAE, issue 60, pages 239-270.
  4. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
  5. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
  6. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
  7. Ibrahim Onour, . "Extreme Risk and Fat-tails Distribution Model:Empirical Analysis," API-Working Paper Series 0911, Arab Planning Institute - Kuwait, Information Center.
  8. Engle, Robert F. & Manganelli, Simone, 2001. "Value at risk models in finance," Working Paper Series 0075, European Central Bank.
  9. Frederick C. Mills, 1927. "The Behavior of Prices," NBER Books, National Bureau of Economic Research, Inc, number mill27-1, July.
  10. Sheedy, Elizabeth, 2009. "Can risk modeling work?," Journal of Financial Transformation, Capco Institute, vol. 27, pages 82-87.
  11. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
  12. Jondeau, E. & Rockinger, M., 1999. "The Tail Behavior of Sotck Returns: Emerging Versus Mature Markets," Working papers 66, Banque de France.
  13. de Jesús, Raúl & Ortiz, Edgar & Cabello, Alejandra, 2013. "Long run peso/dollar exchange rates and extreme value behavior: Value at Risk modeling," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 139-152.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:26:y:2013:i:c:p:355-369. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.