IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v29y2014icp218-238.html
   My bibliography  Save this article

Statistics of extreme events in risk management: The impact of the subprime and global financial crisis on the German stock market

Author

Listed:
  • Herrera, Rodrigo
  • Schipp, Bernhard

Abstract

Given the growing need for managing financial risk and the recent global crisis, risk prediction is a crucial issue in banking and finance. In this paper, we show how recent advances in the statistical analysis of extreme events can provide solid methodological fundamentals for modeling extreme events. Our approach uses self-exciting marked point processes for estimating the tail of loss distributions. The main result is that the time between extreme events plays an important role in the statistical analysis of these events and could therefore be useful to forecast the size and intensity of future extreme events in financial markets. We illustrate this point by measuring the impact of the subprime and global financial crisis on the German stock market in extenso, and briefly as a benchmark in the US stock market. With the help of our fitted models, we backtest the Value at Risk at various quantiles to assess the likeliness of different extreme movements on the DAX, S&P 500 and Nasdaq stock market indices during the crisis. The results show that the proposed models provide accurate risk measures according to the Basel Committee and make better use of the available information.

Suggested Citation

  • Herrera, Rodrigo & Schipp, Bernhard, 2014. "Statistics of extreme events in risk management: The impact of the subprime and global financial crisis on the German stock market," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 218-238.
  • Handle: RePEc:eee:ecofin:v:29:y:2014:i:c:p:218-238
    DOI: 10.1016/j.najef.2014.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940814000734
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Armelle Guillou & Peter Hall, 2001. "A diagnostic for selecting the threshold in extreme value analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 293-305.
    2. Yamamoto, Shugo, 2014. "Transmission of US financial and trade shocks to Asian economies: Implications for spillover of the 2007–2009 US financial crisis," The North American Journal of Economics and Finance, Elsevier, vol. 27(C), pages 88-103.
    3. Allen, David E. & Singh, Abhay K. & Powell, Robert J., 2013. "EVT and tail-risk modelling: Evidence from market indices and volatility series," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 355-369.
    4. Herrera, Rodrigo, 2013. "Energy risk management through self-exciting marked point process," Energy Economics, Elsevier, vol. 38(C), pages 64-76.
    5. Bonfiglioli, Alessandra & Favero, Carlo A., 2005. "Explaining co-movements between stock markets: The case of US and Germany," Journal of International Money and Finance, Elsevier, vol. 24(8), pages 1299-1316, December.
    6. McAleer, Michael & Jimenez-Martin, Juan-Angel & Perez-Amaral, Teodosio, 2013. "Has the Basel Accord improved risk management during the global financial crisis?," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 250-265.
    7. Mandilaras, Alex & Bird, Graham, 2007. "Foreign exchange markets in South-East Asia 1990-2004: An empirical analysis of spillovers during crisis and non-crisis periods," The North American Journal of Economics and Finance, Elsevier, vol. 18(1), pages 41-57, February.
    8. Baur, Dirk & Jung, Robert C., 2006. "Return and volatility linkages between the US and the German stock market," Journal of International Money and Finance, Elsevier, vol. 25(4), pages 598-613, June.
    9. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    10. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    11. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    12. Chavez-Demoulin, V. & McGill, J.A., 2012. "High-frequency financial data modeling using Hawkes processes," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3415-3426.
    13. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
    14. Dimpfl, Thomas & Peter, Franziska J., 2014. "The impact of the financial crisis on transatlantic information flows: An intraday analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 1-13.
    15. Araújo Santos, Paulo & Fraga Alves, Isabel & Hammoudeh, Shawkat, 2013. "High quantiles estimation with Quasi-PORT and DPOT: An application to value-at-risk for financial variables," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 487-496.
    16. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    17. Flad, Michael & Jung, Robert C., 2008. "A common factor analysis for the US and the German stock markets during overlapping trading hours," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(5), pages 498-512, December.
    18. Nash, John C. & Varadhan, Ravi, 2011. "Unifying Optimization Algorithms to Aid Software System Users: optimx for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i09).
    19. Hammoudeh, Shawkat & Araújo Santos, Paulo & Al-Hassan, Abdullah, 2013. "Downside risk management and VaR-based optimal portfolios for precious metals, oil and stocks," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 318-334.
    20. Lee, Hsiu-Chuan & Chang, Shu-Lien, 2013. "Spillovers of currency carry trade returns, market risk sentiment, and U.S. market returns," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 197-216.
    21. de Jesús, Raúl & Ortiz, Edgar & Cabello, Alejandra, 2013. "Long run peso/dollar exchange rates and extreme value behavior: Value at Risk modeling," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 139-152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodrigo Herrera & Adam Clements, 2020. "A marked point process model for intraday financial returns: modeling extreme risk," Empirical Economics, Springer, vol. 58(4), pages 1575-1601, April.
    2. Nikolaus Hautsch & Rodrigo Herrera, 2020. "Multivariate dynamic intensity peaks‐over‐threshold models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 248-272, March.
    3. Herrera, Rodrigo & González, Sergio & Clements, Adam, 2018. "Mutual excitation between OECD stock and oil markets: A conditional intensity extreme value approach," The North American Journal of Economics and Finance, Elsevier, vol. 46(C), pages 70-88.
    4. Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2017. "Risk quantification in turmoil markets," Risk Management, Palgrave Macmillan, vol. 19(3), pages 202-224, August.

    More about this item

    Keywords

    Extreme value theory; Value at Risk; Subprime crisis; German stock market;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:29:y:2014:i:c:p:218-238. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.