IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v36y2012i12p3415-3426.html
   My bibliography  Save this article

High-frequency financial data modeling using Hawkes processes

Author

Listed:
  • Chavez-Demoulin, V.
  • McGill, J.A.

Abstract

Intraday Value-at-Risk (VaR) is one of the risk measures used by market participants involved in high-frequency trading. High-frequency log-returns feature important kurtosis (fat tails) and volatility clustering (extreme log-returns appear in clusters) that VaR models should take into account. We propose a marked point process model for the excesses of the time series over a high threshold that combines Hawkes processes for the exceedances with a generalized Pareto distribution model for the marks (exceedance sizes). The conditional approach features intraday clustering of extremes and is used to calculate instantaneous conditional VaR. The models are backtested on real data and compared to a competitor approach that proposes a nonparametric extension of the classical peaks-over-threshold method. Maximum likelihood estimation is computationally intensive; we use a differential evolution genetic algorithm to find adequate starting values for the optimization process.

Suggested Citation

  • Chavez-Demoulin, V. & McGill, J.A., 2012. "High-frequency financial data modeling using Hawkes processes," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3415-3426.
  • Handle: RePEc:eee:jbfina:v:36:y:2012:i:12:p:3415-3426
    DOI: 10.1016/j.jbankfin.2012.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426612002336
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
    2. Pierre Giot, 2005. "Market risk models for intraday data," The European Journal of Finance, Taylor & Francis Journals, vol. 11(4), pages 309-324.
    3. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    4. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    5. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Hawkes process; High-frequency data; Peaks-over-threshold; Self-exciting process; Value-at-risk;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:36:y:2012:i:12:p:3415-3426. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jbf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.