IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v58y2020i4d10.1007_s00181-018-1600-y.html
   My bibliography  Save this article

A marked point process model for intraday financial returns: modeling extreme risk

Author

Listed:
  • Rodrigo Herrera

    (Universidad de Talca)

  • Adam Clements

    (Queensland University of Technology)

Abstract

Forecasting the risk of extreme losses is an important issue in the management of financial risk and has attracted a great deal of research attention. However, little attention has been paid to extreme losses in a higher frequency intraday setting. This paper proposes a novel marked point process model to capture extreme risk in intraday returns, taking into account a range of trading activity and liquidity measures. A novel approach is proposed for defining the threshold upon which extreme events are identified taking into account the diurnal patterns in intraday trading activity. It is found that models including covariates, mainly relating to trading intensity and spreads offer the best in-sample fit, and prediction of extreme risk, in particular at higher quantiles.

Suggested Citation

  • Rodrigo Herrera & Adam Clements, 2020. "A marked point process model for intraday financial returns: modeling extreme risk," Empirical Economics, Springer, vol. 58(4), pages 1575-1601, April.
  • Handle: RePEc:spr:empeco:v:58:y:2020:i:4:d:10.1007_s00181-018-1600-y
    DOI: 10.1007/s00181-018-1600-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-018-1600-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-018-1600-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin D.D. Evans & Richard K. Lyons, 2017. "Order Flow and Exchange Rate Dynamics," World Scientific Book Chapters, in: Studies in Foreign Exchange Economics, chapter 6, pages 247-290, World Scientific Publishing Co. Pte. Ltd..
    2. Herrera, Rodrigo & Schipp, Bernhard, 2013. "Value at risk forecasts by extreme value models in a conditional duration framework," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 33-47.
    3. Tarun Chordia & Richard Roll & Avanidhar Subrahmanyam, 2001. "Market Liquidity and Trading Activity," Journal of Finance, American Finance Association, vol. 56(2), pages 501-530, April.
    4. Clements, A.E. & Herrera, R. & Hurn, A.S., 2015. "Modelling interregional links in electricity price spikes," Energy Economics, Elsevier, vol. 51(C), pages 383-393.
    5. Anthony D. Hall & Nikolaus Hautsch, 2008. "Order aggressiveness and order book dynamics," Studies in Empirical Economics, in: Luc Bauwens & Winfried Pohlmeier & David Veredas (ed.), High Frequency Financial Econometrics, pages 133-165, Springer.
    6. Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011. "Evaluating Value-at-Risk Models with Desk-Level Data," Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
    7. Chavez-Demoulin, V. & Embrechts, P. & Sardy, S., 2014. "Extreme-quantile tracking for financial time series," Journal of Econometrics, Elsevier, vol. 181(1), pages 44-52.
    8. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2002. "Order imbalance, liquidity, and market returns," Journal of Financial Economics, Elsevier, vol. 65(1), pages 111-130, July.
    9. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
    10. Berger, David & Chaboud, Alain & Hjalmarsson, Erik, 2009. "What drives volatility persistence in the foreign exchange market?," Journal of Financial Economics, Elsevier, vol. 94(2), pages 192-213, November.
    11. Opschoor, Anne & Taylor, Nick & van der Wel, Michel & van Dijk, Dick, 2014. "Order flow and volatility: An empirical investigation," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 185-201.
    12. Liu, Shouwei & Tse, Yiu-Kuen, 2015. "Intraday Value-at-Risk: An asymmetric autoregressive conditional duration approach," Journal of Econometrics, Elsevier, vol. 189(2), pages 437-446.
    13. Hee‐Joon Ahn & Kee‐Hong Bae & Kalok Chan, 2001. "Limit Orders, Depth, and Volatility: Evidence from the Stock Exchange of Hong Kong," Journal of Finance, American Finance Association, vol. 56(2), pages 767-788, April.
    14. Herrera, Rodrigo & Schipp, Bernhard, 2014. "Statistics of extreme events in risk management: The impact of the subprime and global financial crisis on the German stock market," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 218-238.
    15. Naes, Randi & Skjeltorp, Johannes A., 2006. "Order book characteristics and the volume-volatility relation: Empirical evidence from a limit order market," Journal of Financial Markets, Elsevier, vol. 9(4), pages 408-432, November.
    16. Herrera, Rodrigo & González, Nicolás, 2014. "The modeling and forecasting of extreme events in electricity spot markets," International Journal of Forecasting, Elsevier, vol. 30(3), pages 477-490.
    17. Gresnigt, Francine & Kole, Erik & Franses, Philip Hans, 2015. "Interpreting financial market crashes as earthquakes: A new Early Warning System for medium term crashes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 123-139.
    18. Hasbrouck, Joel & Seppi, Duane J., 2001. "Common factors in prices, order flows, and liquidity," Journal of Financial Economics, Elsevier, vol. 59(3), pages 383-411, March.
    19. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    20. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    21. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 53-89.
    22. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    23. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    24. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    25. Hall, Anthony D. & Hautsch, Nikolaus, 2007. "Modelling the buy and sell intensity in a limit order book market," Journal of Financial Markets, Elsevier, vol. 10(3), pages 249-286, August.
    26. Ziggel, Daniel & Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2014. "A new set of improved Value-at-Risk backtests," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 29-41.
    27. Chavez-Demoulin, V. & McGill, J.A., 2012. "High-frequency financial data modeling using Hawkes processes," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3415-3426.
    28. Groß-Klußmann, Axel & Hautsch, Nikolaus, 2011. "When machines read the news: Using automated text analytics to quantify high frequency news-implied market reactions," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 321-340, March.
    29. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    30. Valérie Chavez-Demoulin & Paul Embrechts & Marius Hofert, 2016. "An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 735-776, September.
    31. Herrera, Rodrigo & Schipp, Bernhard, 2011. "Extreme value models in a conditional duration intensity framework," SFB 649 Discussion Papers 2011-022, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James, Robert & Leung, Henry & Leung, Jessica Wai Yin & Prokhorov, Artem, 2023. "Forecasting tail risk measures for financial time series: An extreme value approach with covariates," Journal of Empirical Finance, Elsevier, vol. 71(C), pages 29-50.
    2. Stindl, Tom, 2023. "Forecasting intraday market risk: A marked self-exciting point process with exogenous renewals," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 182-198.
    3. Fadugba, Sunday Emmanuel, 2020. "Homotopy analysis method and its applications in the valuation of European call options with time-fractional Black-Scholes equation," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    2. Candia, Claudio & Herrera, Rodrigo, 2024. "An empirical review of dynamic extreme value models for forecasting value at risk, expected shortfall and expectile," Journal of Empirical Finance, Elsevier, vol. 77(C).
    3. Herrera, R. & Clements, A.E., 2018. "Point process models for extreme returns: Harnessing implied volatility," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 161-175.
    4. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2023. "Forecasting extreme financial risk: A score-driven approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 720-735.
    5. Yannick Hoga & Matei Demetrescu, 2023. "Monitoring Value-at-Risk and Expected Shortfall Forecasts," Management Science, INFORMS, vol. 69(5), pages 2954-2971, May.
    6. Adam Clements & Joanne Fuller & Vasilios Papalexiou, 2015. "Public news flow in intraday component models for trading activity and volatility," NCER Working Paper Series 106, National Centre for Econometric Research.
    7. Stindl, Tom, 2023. "Forecasting intraday market risk: A marked self-exciting point process with exogenous renewals," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 182-198.
    8. Gordy, Michael B. & McNeil, Alexander J., 2020. "Spectral backtests of forecast distributions with application to risk management," Journal of Banking & Finance, Elsevier, vol. 116(C).
    9. Marco Bee & Luca Trapin, 2018. "Estimating and Forecasting Conditional Risk Measures with Extreme Value Theory: A Review," Risks, MDPI, vol. 6(2), pages 1-16, April.
    10. Rubia, Antonio & Sanchis-Marco, Lidia, 2013. "On downside risk predictability through liquidity and trading activity: A dynamic quantile approach," International Journal of Forecasting, Elsevier, vol. 29(1), pages 202-219.
    11. Alexander, Carol & Han, Yang & Meng, Xiaochun, 2023. "Static and dynamic models for multivariate distribution forecasts: Proper scoring rule tests of factor-quantile versus multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1078-1096.
    12. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    13. Ana-Maria Fuertes & Jose Olmo, 2016. "On Setting Day-Ahead Equity Trading Risk Limits: VaR Prediction at Market Close or Open?," JRFM, MDPI, vol. 9(3), pages 1-20, September.
    14. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
    15. Şener, Emrah & Baronyan, Sayad & Ali Mengütürk, Levent, 2012. "Ranking the predictive performances of value-at-risk estimation methods," International Journal of Forecasting, Elsevier, vol. 28(4), pages 849-873.
    16. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    17. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    18. Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2017. "Risk quantification in turmoil markets," Risk Management, Palgrave Macmillan, vol. 19(3), pages 202-224, August.
    19. Herrera, Rodrigo & Rodriguez, Alejandro & Pino, Gabriel, 2017. "Modeling and forecasting extreme commodity prices: A Markov-Switching based extreme value model," Energy Economics, Elsevier, vol. 63(C), pages 129-143.
    20. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.

    More about this item

    Keywords

    Hawkes process; Peaks over threshold; Bid-ask spread; Extreme risk; High frequency;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:58:y:2020:i:4:d:10.1007_s00181-018-1600-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.