IDEAS home Printed from https://ideas.repec.org/p/rtv/ceisrp/122.html
   My bibliography  Save this paper

On estimating the conditional expected shortfall

Author

Abstract

Unlike the value at risk, the expected shortfall is a coherent measure of risk. In this paper, we discuss estimation of the expected shortfall of a random variable Yt with special reference to the case when auxiliary information is available in the form of a set of predictors Xt. We consider three classes of estimators of the conditional expected shortfall of Yt given Xt: a class of fully non-parametric estimators and two classes of analog estimators based, respectively, on the empirical conditional quantile function and the empirical conditional distribution function. We study their sampling properties by means of a set of Monte Carlo experiments and analyze their performance in an empirical application to financial data.

Suggested Citation

  • Franco Peracchi & Andrei V. Tanase, 2008. "On estimating the conditional expected shortfall," CEIS Research Paper 122, Tor Vergata University, CEIS, revised 14 Jul 2008.
  • Handle: RePEc:rtv:ceisrp:122
    as

    Download full text from publisher

    File URL: ftp://www.ceistorvergata.it/repec/rpaper/RP122.pdf
    File Function: Main text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, March.
    2. Peracchi, Franco, 2002. "On estimating conditional quantiles and distribution functions," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 433-447, February.
    3. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    4. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    5. Shorrocks, Anthony F, 1983. "Ranking Income Distributions," Economica, London School of Economics and Political Science, vol. 50(197), pages 3-17, February.
    6. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leorato, Samantha & Peracchi, Franco & Tanase, Andrei V., 2012. "Asymptotically efficient estimation of the conditional expected shortfall," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 768-784.
    2. Chun, So Yeon & Shapiro, Alexander & Uryasev, Stan, 2011. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," MPRA Paper 30132, University Library of Munich, Germany.
    3. Rockafellar, R.T. & Royset, J.O. & Miranda, S.I., 2014. "Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 234(1), pages 140-154.

    More about this item

    Keywords

    risk measures; quantile regression; logistic regression;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:122. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Barbara Piazzi). General contact details of provider: http://edirc.repec.org/data/csrotit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.