IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v137y2007i2p641-673.html

Model comparison of coordinate-free multivariate skewed distributions with an application to stochastic frontiers

Author

Listed:
  • Ferreira, Jose T.A.S.
  • Steel, Mark F.J.

Abstract

We consider classes of multivariate distributions which can model skewness and are closed under orthogonal transformations. We review two classes of such distributions proposed in the literature and focus our attention on a particular, yet quite flexible, subclass of one of these classes. Members of this subclass are defined by affine transformations of univariate (skewed) distributions that ensure the existence of a set of coordinate axes along which there is independence and the marginals are known analytically. The choice of an appropriate m-dimensional skewed distribution is then restricted to the simpler problem of choosing m univariate skewed distributions. We introduce a Bayesian model comparison setup for selection of these univariate skewed distributions. The analysis does not rely on the existence of moments (allowing for any tail behaviour) and uses equivalent priors on the common characteristics of the different models. Finally, we apply this framework to multi-output stochastic frontiers using data from Dutch dairy farms.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Ferreira, Jose T.A.S. & Steel, Mark F.J., 2007. "Model comparison of coordinate-free multivariate skewed distributions with an application to stochastic frontiers," Journal of Econometrics, Elsevier, vol. 137(2), pages 641-673, April.
  • Handle: RePEc:eee:econom:v:137:y:2007:i:2:p:641-673
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(06)00071-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maximiano Pinheiro & Paulo Esteves, 2012. "On the uncertainty and risks of macroeconomic forecasts: combining judgements with sample and model information," Empirical Economics, Springer, vol. 42(3), pages 639-665, June.
    2. Carta, Alessandro & Steel, Mark F.J., 2012. "Modelling multi-output stochastic frontiers using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3757-3773.
    3. Jorge Galán & Helena Veiga & Michael Wiper, 2014. "Bayesian estimation of inefficiency heterogeneity in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 85-101, August.
    4. Henningsen, Arne & Bělín, Matěj & Henningsen, Géraldine, 2017. "New insights into the stochastic ray production frontier," Economics Letters, Elsevier, vol. 156(C), pages 18-21.
    5. Galán, Jorge E. & Pollitt, Michael G., 2014. "Inefficiency persistence and heterogeneity in Colombian electricity utilities," Energy Economics, Elsevier, vol. 46(C), pages 31-44.
    6. Walheer, Barnabé & Zhang, Linjia, 2018. "Profit Luenberger and Malmquist-Luenberger indexes for multi-activity decision making units: the case of the star-rated hotel industry in China," RIEI Working Papers 2018-06, Xi'an Jiaotong-Liverpool University, Research Institute for Economic Integration.
    7. M. Jones, 2004. "Families of distributions arising from distributions of order statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 1-43, June.
    8. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    9. Natalia Khorunzhina & Jean-François Richard, 2019. "Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 991-1017, March.
    10. De la Cruz, Rolando, 2008. "Bayesian non-linear regression models with skew-elliptical errors: Applications to the classification of longitudinal profiles," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 436-449, December.
    11. Barnabé Walheer, 2024. "Agro-Climatic Environment Heterogeneity and Productivity Convergence," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 22(4), pages 1001-1037, December.
    12. Christophe Ley, 2014. "Flexible Modelling in Statistics: Past, present and Future," Working Papers ECARES ECARES 2014-42, ULB -- Universite Libre de Bruxelles.
    13. Silvia Emili & Federica Galli, 2025. "Modelling Spatio-Temporal Dynamics in Multi-Output Stochastic Frontiers for the European Agribusiness Industry," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(2), pages 540-575, June.
    14. Sarmiento, Miguel & Galán, Jorge E., 2014. "Heterogeneous effects of risk-taking on bank efficiency : a stochastic frontier model with random coefficients," DES - Working Papers. Statistics and Econometrics. WS ws142013, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. J. T. A. S. Ferreira & M. F. J. Steel, 2004. "On Describing Multivariate Skewness: A Directional Approach," Econometrics 0409010, University Library of Munich, Germany.
    16. Galán, Jorge E. & Veiga, Helena & Wiper, Michael P., 2015. "Dynamic effects in inefficiency: Evidence from the Colombian banking sector," European Journal of Operational Research, Elsevier, vol. 240(2), pages 562-571.
    17. Jianxu Liu & Mengjiao Wang & Ji Ma & Sanzidur Rahman & Songsak Sriboonchitta, 2020. "A Simultaneous Stochastic Frontier Model with Dependent Error Components and Dependent Composite Errors: An Application to Chinese Banking Industry," Mathematics, MDPI, vol. 8(2), pages 1-23, February.
    18. Maximiano Pinheiro, 2012. "Marginal Distributions of Random Vectors Generated by Affine Transformations of Independent Two-Piece Normal Variables," Journal of Probability and Statistics, Hindawi, vol. 2012, pages 1-10, April.
    19. Galán, Jorge & Ramos, Sofía B. & Veiga, Helena, 2015. "An analysis of the dynamics of efficiency of mutual funds," DES - Working Papers. Statistics and Econometrics. WS ws1517, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Cynthia A. Bartel & Keri L. Jacobs & Kenneth J. Moore & D. Raj Raman, 2024. "Anticipatory Technoeconomic Evaluation of Kentucky Bluegrass-Based Perennial Groundcover Implementations in Large-Scale Midwestern US Corn Production Systems," Sustainability, MDPI, vol. 16(16), pages 1-16, August.
    21. Wraith, Darren & Forbes, Florence, 2015. "Location and scale mixtures of Gaussians with flexible tail behaviour: Properties, inference and application to multivariate clustering," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 61-73.
    22. Jorge E. Galán & Michael G. Pollitt, 2014. "Inefficiency persistence and heterogeneity in Colombian electricity distribution utilities," Working Papers EPRG 1403, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    23. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2006. "A Constructive Representation of Univariate Skewed Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 823-829, June.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:137:y:2007:i:2:p:641-673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.