Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Natalia Khorunzhina & Jean-François Richard, 2019. "Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 991-1017, March.
- Jean-Francois Richard, 2016. "Finite Gaussian Mixture Approximations to Analytically Intractable Density Kerkels," Working Paper 5980, Department of Economics, University of Pittsburgh.
References listed on IDEAS
- Kon, Stanley J, 1984. "Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
- Roman Liesenfeld & Jean-Francois Richard, 2006.
"Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models,"
Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 335-360.
- Liesenfeld, Roman & Richard, Jean-François, 2004. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Economics Working Papers 2004-12, Christian-Albrechts-University of Kiel, Department of Economics.
- Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
- repec:dau:papers:123456789/6072 is not listed on IDEAS
- Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998.
"Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
- Sangjoon Kim, Neil Shephard & Siddhartha Chib, "undated". "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers W26, revised version of W, Economics Group, Nuffield College, University of Oxford.
- Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
- Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1996. "Stochastic Volatility: Likelihood Inference And Comparison With Arch Models," Econometrics 9610002, University Library of Munich, Germany.
- Geweke, John, 1996.
"Monte carlo simulation and numerical integration,"
Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 15, pages 731-800,
Elsevier.
- John Geweke, 1995. "Monte Carlo simulation and numerical integration," Staff Report 192, Federal Reserve Bank of Minneapolis.
- Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
- Subu Venkataraman, 1997. "Value at risk for a mixture of normal distributions: the use of quasi- Bayesian estimation techniques," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 21(Mar), pages 2-13.
- Tucker, Alan L, 1992. "A Reexamination of Finite- and Infinite-Variance Distributions as Models of Daily Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 73-81, January.
- Keane, Michael P & Wolpin, Kenneth I, 1997.
"The Career Decisions of Young Men,"
Journal of Political Economy, University of Chicago Press, vol. 105(3), pages 473-522, June.
- Michael P. Keane & Kenneth I. Wolpin, 1995. "The career decisions of young men," Working Papers 559, Federal Reserve Bank of Minneapolis.
- H. M. Amman & D. A. Kendrick & J. Rust (ed.), 1996. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 1, number 1.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2012.
"A class of adaptive importance sampling weighted EM algorithms for efficient and robust posterior and predictive simulation,"
Journal of Econometrics, Elsevier, vol. 171(2), pages 101-120.
- Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2012. "A Class of Adaptive Importance Sampling Weighted EM Algorithms for Efficient and Robust Posterior and Predictive Simulation," Tinbergen Institute Discussion Papers 12-026/4, Tinbergen Institute.
- Hiroyuki Kasahara & Katsumi Shimotsu, 2015. "Testing the Number of Components in Normal Mixture Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1632-1645, December.
- Ardia, David & Hoogerheide, Lennart F. & van Dijk, Herman K., 2009.
"Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i03).
- David Ardia & Lennart F. Hoogerheide & Herman K. van Dijk, 2008. "Adaptive Mixture of Student-t distributions as a Flexible Candidate Distribution for Efficient Simulation: the R Package AdMit," Tinbergen Institute Discussion Papers 08-062/4, Tinbergen Institute, revised 15 Dec 2008.
- Ardia, David & Hoogerheide, Lennart F. & van Dijk, Herman K., 2008. "Adaptive mixture of Student-t distributions as a flexible candidate distribution for efficient simulation: the R package AdMit," DQE Working Papers 9, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 07 Jan 2009.
- Stephen V. Cameron & James J. Heckman, 2001. "The Dynamics of Educational Attainment for Black, Hispanic, and White Males," Journal of Political Economy, University of Chicago Press, vol. 109(3), pages 455-499, June.
- Yulia V. Marchenko & Marc G. Genton, 2012. "A Heckman Selection- t Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 304-317, March.
- Ferreira, Jose T.A.S. & Steel, Mark F.J., 2007.
"Model comparison of coordinate-free multivariate skewed distributions with an application to stochastic frontiers,"
Journal of Econometrics, Elsevier, vol. 137(2), pages 641-673, April.
- Jose T.A.S. Ferreira & Mark F.J. Steel, 2004. "Model Comparison of Coordinate-Free Multivariate Skewed Distributions with an Application to Stochastic Frontiers," Econometrics 0404005, University Library of Munich, Germany.
- Hoogerheide, Lennart F. & Kaashoek, Johan F. & van Dijk, Herman K., 2007.
"On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks,"
Journal of Econometrics, Elsevier, vol. 139(1), pages 154-180, July.
- HOOGERHEIDE, Lennart F. & KAASHOEK, Johan F. & VAN DIJK, Herman K., 2005. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," LIDAM Discussion Papers CORE 2005029, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- HOOGERHEIDE, Lennart F. & KAASHOEK, Johan F. & van DIJK, Herman K., 2007. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: an application of flexible sampling methods using neural networks," LIDAM Reprints CORE 1922, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hoogerheide, L.F. & Kaashoek, J.F. & van Dijk, H.K., 2005. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: an application of flexible sampling methods using neural networks," Econometric Institute Research Papers EI 2005-12, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Emmanuel O. Ogundimu & Jane L. Hutton, 2016. "A Sample Selection Model with Skew-normal Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 172-190, March.
- Jean-Francois Richard, 2007. "Efficient High-Dimensional Importance Sampling," Working Paper 321, Department of Economics, University of Pittsburgh, revised Jan 2007.
- Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
- C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
- Wayne S. DeSarbo & Alexandru M. Degeratu & Michel Wedel & M. Kim Saxton, 2001. "The Spatial Representation of Market Information," Marketing Science, INFORMS, vol. 20(4), pages 426-441, June.
- Richard, Jean-Francois & Zhang, Wei, 2007. "Efficient high-dimensional importance sampling," Journal of Econometrics, Elsevier, vol. 141(2), pages 1385-1411, December.
- Duong, Tarn, 2007. "ks: Kernel Density Estimation and Kernel Discriminant Analysis for Multivariate Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i07).
- Stefano Mazzuco & Bruno Scarpa, 2015. "Fitting age-specific fertility rates by a flexible generalized skew normal probability density function," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 187-203, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Smith, Michael Stanley & Maneesoonthorn, Worapree, 2018. "Inversion copulas from nonlinear state space models with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 34(3), pages 389-407.
- István Barra & Lennart Hoogerheide & Siem Jan Koopman & André Lucas, 2017.
"Joint Bayesian Analysis of Parameters and States in Nonlinear non‐Gaussian State Space Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 1003-1026, August.
- István Barra & Lennart Hoogerheide & Siem Jan Koopman & André Lucas, 2014. "Joint Bayesian Analysis of Parameters and States in Nonlinear, Non-Gaussian State Space Models," Tinbergen Institute Discussion Papers 14-118/III, Tinbergen Institute, revised 31 Mar 2016.
- Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
- Dellaportas, Petros & Tsionas, Mike G., 2019. "Importance sampling from posterior distributions using copula-like approximations," Journal of Econometrics, Elsevier, vol. 210(1), pages 45-57.
- Charles S. Bos, 2011. "Relating Stochastic Volatility Estimation Methods," Tinbergen Institute Discussion Papers 11-049/4, Tinbergen Institute.
- Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
- McCausland, William J., 2012. "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," Journal of Econometrics, Elsevier, vol. 168(2), pages 189-206.
- Isabel Casas & Helena Veiga, 2021.
"Exploring Option Pricing and Hedging via Volatility Asymmetry,"
Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1015-1039, April.
- Casas, Isabel, 2019. "Exploring option pricing and hedging via volatility asymmetry," DES - Working Papers. Statistics and Econometrics. WS 28234, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Liesenfeld, Roman & Richard, Jean-François, 2008.
"Improving MCMC, using efficient importance sampling,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
- Liesenfeld, Roman & Richard, Jean-François, 2006. "Improving MCMC Using Efficient Importance Sampling," Economics Working Papers 2006-05, Christian-Albrechts-University of Kiel, Department of Economics.
- Nalan Basturk & Stefano Grassi & Lennart Hoogerheide & Herman K. van Dijk, 2016. "Time-varying Combinations of Bayesian Dynamic Models and Equity Momentum Strategies," Tinbergen Institute Discussion Papers 16-099/III, Tinbergen Institute.
- Baştürk, N. & Borowska, A. & Grassi, S. & Hoogerheide, L. & van Dijk, H.K., 2019.
"Forecast density combinations of dynamic models and data driven portfolio strategies,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 170-186.
- Nalan Basturk & Agnieszka Borowska & Stefano Grassi & Lennart Hoogerheide & Herman K. van Dijk, 2018. "Forecast Density Combinations of Dynamic Models and Data Driven Portfolio Strategies," Working Paper 2018/10, Norges Bank.
- Nalan Basturk & Agnieszka Borowska & Stefano Grassi & Lennart (L.F.) Hoogerheide & Herman (H.K.) van Dijk, 2018. "Forecast Density Combinations of Dynamic Models and Data Driven Portfolio Strategies," Tinbergen Institute Discussion Papers 18-076/III, Tinbergen Institute.
- BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011.
"Volatility models,"
LIDAM Discussion Papers CORE
2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Yu, Jun, 2012.
"A semiparametric stochastic volatility model,"
Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
- Jun Yu, 2008. "A Semiparametric Stochastic Volatility Model," Working Papers CoFie-04-2008, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Christian M. Hafner & Hans Manner, 2012.
"Dynamic stochastic copula models: estimation, inference and applications,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(2), pages 269-295, March.
- Hafner, C.M. & Manner, H., 2008. "Dynamic stochastic copula models: estimation, inference and applications," Research Memorandum 043, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Hafner, Christian & Manner H., 2012. "Dynamic stochastic copula models: Estimation, inference and applications," LIDAM Reprints ISBA 2012022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
- Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
- Kleppe, Tore Selland & Skaug, Hans J., 2008. "Simulated maximum likelihood for general stochastic volatility models: a change of variable approach," MPRA Paper 12022, University Library of Munich, Germany.
- Mengheng Li & Marcel Scharth, 2022.
"Leverage, Asymmetry, and Heavy Tails in the High-Dimensional Factor Stochastic Volatility Model,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 285-301, January.
- Mengheng Li & Marcel Scharth, 2018. "Leverage, asymmetry and heavy tails in the high-dimensional factor stochastic volatility model," Working Paper Series 49, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
- Jensen, Mark J. & Maheu, John M., 2010.
"Bayesian semiparametric stochastic volatility modeling,"
Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
- Mark J Jensen & John M Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," Working Papers tecipa-314, University of Toronto, Department of Economics.
- Mark J. Jensen & John M. Maheu, 2009. "Bayesian Semiparametric Stochastic Volatility Modeling," Working Paper series 23_09, Rimini Centre for Economic Analysis.
- Mark J. Jensen & John M. Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," FRB Atlanta Working Paper 2008-15, Federal Reserve Bank of Atlanta.
- Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
More about this item
Keywords
Finite mixture; Distance measure; Gaussian quadrature; Importance sampling; Adaptive algorithm; Stochastic volatility; Density kernel;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
NEP fields
This paper has been announced in the following NEP Reports:- NEP-GER-2016-07-16 (German Papers)
- NEP-ORE-2016-07-16 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:72326. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.