IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models

  • Roman Liesenfeld
  • Jean-Francois Richard

In this paper, efficient importance sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate stochastic volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of high-dimensional interdependent integrals. It can be used to carry out ML-estimation of SV models as well as simulation smoothing where the latent volatilities are sampled at once. Based on this EIS simulation smoother, a Bayesian Markov chain Monte Carlo (MCMC) posterior analysis of the parameters of SV models can be performed.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930600713424
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Econometric Reviews.

Volume (Year): 25 (2006)
Issue (Month): 2-3 ()
Pages: 335-360

as
in new window

Handle: RePEc:taf:emetrv:v:25:y:2006:i:2-3:p:335-360
Contact details of provider: Web page: http://www.tandfonline.com/LECR20

Order Information: Web: http://www.tandfonline.com/pricing/journal/LECR20

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Eric Jacquier & Nicholas G. Polson & Peter Rossi, 1999. "Stochastic Volatility: Univariate and Multivariate Extensions," Computing in Economics and Finance 1999 112, Society for Computational Economics.
  2. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
  3. Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
  4. BAUWENS, Luc & HAUTSCH, Nikolaus, 2003. "Dynamic latent factor models for intensity processes," CORE Discussion Papers 2003103, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  5. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
  6. GHYSELS, Eric & HARVEY, Andrew & RENAULT, Eric, 1995. "Stochastic Volatility," CORE Discussion Papers 1995069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  7. Neil Shephard & Siem Jan Koopman, 2002. "Testing the assumptions behind the use of importance sampling," Economics Series Working Papers 2002-W17, University of Oxford, Department of Economics.
  8. Neil Shephard & Michael K Pitt, 1995. "Likelihood analysis of non-Gaussian parameter driven models," Economics Papers 15 & 108., Economics Group, Nuffield College, University of Oxford.
  9. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
  10. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-57, July.
  11. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
  12. Lee Kai Ming & Koopman Siem Jan, 2004. "Estimating Stochastic Volatility Models: A Comparison of Two Importance Samplers," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-17, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:25:y:2006:i:2-3:p:335-360. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.