IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Likelihood based inference for diffusion driven models

  • Siddhartha Chib

    (Olin School of Business, Washington University)

  • Michael K Pitt

    (University of Warwick)

  • Neil Shephard

    ()

    (Nuffield College, University of Oxford, UK)

This paper provides methods for carrying out likelihood based inference for diffusion driven models, for example discretely observed multivariate diffusions, continuous time stochastic volatility models and counting process models. The diffusions can potentially be non-stationary. Although our methods are sampling based, making use of Markov chain Monte Carlo methods to sample the posterior distribution of the relevant unknowns, our general strategies and details are different from previous work along these lines. The methods we develop are simple to implement and simulation efficient. Importantly, unlike previous methods, the performance of our technique is not worsened, in fact it improves, as the degree of latent augmentation is increased to reduce the bias of the Euler approximation. In addition, our method is not subject to a degeneracy that afflicts previous techniques when the degree of latent augmentation is increased. We also discuss issues of model choice, model checking and filtering. The techniques and ideas are applied to both simulated and real data.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.nuff.ox.ac.uk/economics/papers/2004/w20/chibpittshephard.pdf
Download Restriction: no

Paper provided by Economics Group, Nuffield College, University of Oxford in its series Economics Papers with number 2004-W20.

as
in new window

Length: 25 pages
Date of creation: 22 Aug 2004
Date of revision:
Handle: RePEc:nuf:econwp:0420
Contact details of provider: Web page: http://www.nuff.ox.ac.uk/economics/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Tauchen, George E. & Gallant, A. Ronald, 1995. "Which Moments to Match," Working Papers 95-20, Duke University, Department of Economics.
  2. Jo�o Nicolau, 2002. "A new technique for simulating the likelihood of stochastic differential equations," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 91-103, June.
  3. Gourieroux, C. & Monfort, A. & Renault, E., 1992. "Indirect Inference," Papers 92.279, Toulouse - GREMAQ.
  4. Clive G. Bowsher, 2005. "Modelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Models," Economics Papers 2005-W26, Economics Group, Nuffield College, University of Oxford.
  5. A. S. Hurn & K. A. Lindsay & V. L. Martin, 2003. "On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential Equations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 45-63, 01.
  6. Smith, A A, Jr, 1993. "Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S63-84, Suppl. De.
  7. Ghysels, E. & Harvey, A. & Renault, E., 1996. "Stochastic Volatility," Cahiers de recherche 9613, Universite de Montreal, Departement de sciences economiques.
  8. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
  9. Yacine Ait-Sahalia, 2002. "Closed-Form Likelihood Expansions for Multivariate Diffusions," NBER Working Papers 8956, National Bureau of Economic Research, Inc.
  10. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
  11. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
  12. Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
  13. Ola Elerian & Siddhartha Chib & Neil Shephard, 2000. "Likelihood inference for discretely observed non-linear diffusions," OFRC Working Papers Series 2000mf02, Oxford Financial Research Centre.
  14. repec:cup:etheor:v:12:y:1996:i:4:p:657-81 is not listed on IDEAS
  15. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
  16. Brandt, Michael W. & Santa-Clara, Pedro, 2002. "Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets," Journal of Financial Economics, Elsevier, vol. 63(2), pages 161-210, February.
  17. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
  18. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
  19. Durham, Garland B., 2003. "Likelihood-based specification analysis of continuous-time models of the short-term interest rate," Journal of Financial Economics, Elsevier, vol. 70(3), pages 463-487, December.
  20. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649 Elsevier.
  21. Chib, Siddhartha & Shephard, Neil, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 325-27, July.
  22. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
  23. Yacine Ait-Sahalia, 1998. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-Form Approach," NBER Technical Working Papers 0222, National Bureau of Economic Research, Inc.
  24. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-38, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nuf:econwp:0420. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Maxine Collett)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.