IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v24y2003i1p45-63.html
   My bibliography  Save this article

On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential Equations

Author

Listed:
  • A. S. Hurn
  • K. A. Lindsay
  • V. L. Martin

Abstract

. A method for estimating the parameters of stochastic differential equations (SDEs) by simulated maximum likelihood is presented. This method is feasible whenever the underlying SDE is a Markov process. Estimates are compared to those generated by indirect inference, discrete and exact maximum likelihood. The technique is illustrated with reference to a one‐factor model of the term structure of interest rates using 3‐month US Treasury Bill data.

Suggested Citation

  • A. S. Hurn & K. A. Lindsay & V. L. Martin, 2003. "On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential Equations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 45-63, January.
  • Handle: RePEc:bla:jtsera:v:24:y:2003:i:1:p:45-63
    DOI: 10.1111/1467-9892.00292
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9892.00292
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9892.00292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    2. Gourieroux, C & Monfort, A & Renault, E, 1993. "Indirect Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 85-118, Suppl. De.
    3. Eckhard Platen, 1999. "An Introduction to Numerical Methods for Stochastic Differential Equations," Research Paper Series 6, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Brennan, Michael J. & Schwartz, Eduardo S., 1979. "A continuous time approach to the pricing of bonds," Journal of Banking & Finance, Elsevier, vol. 3(2), pages 133-155, July.
    5. Pagan, A.R. & Hall, A.D. & Martin, V., 1995. "Modelling the Term Structure," Papers 284, Australian National University - Department of Economics.
    6. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    7. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    8. Kees G. Koedijk & François G. J. A. Nissen & Peter C. Schotman & Christian C. P. Wolff, 1997. "The Dynamics of Short-Term Interest Rate Volatility Reconsidered," Review of Finance, European Finance Association, vol. 1(1), pages 105-130.
    9. Brenner, Robin J. & Harjes, Richard H. & Kroner, Kenneth F., 1996. "Another Look at Models of the Short-Term Interest Rate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 85-107, March.
    10. Pastorello, Sergio & Renault, Eric & Touzi, Nizar, 2000. "Statistical Inference for Random-Variance Option Pricing," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 358-367, July.
    11. Ait-Sahalia, Yacine, 1996. "Nonparametric Pricing of Interest Rate Derivative Securities," Econometrica, Econometric Society, vol. 64(3), pages 527-560, May.
    12. P. E. Kloeden & Eckhard Platen & H. Schurz & M. Sørensen, 1996. "On effects of discretization on estimators of drift parameters for diffusion processes," Published Paper Series 1996-2, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    13. Elerain, Ola & Chib, Siddhartha & Shephard, Neil, 2001. "Likelihood Inference for Discretely Observed Nonlinear Diffusions," Econometrica, Econometric Society, vol. 69(4), pages 959-993, July.
    14. Michael J. Brennan and Eduardo S. Schwartz., 1979. "A Continuous-Time Approach to the Pricing of Bonds," Research Program in Finance Working Papers 85, University of California at Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    2. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    3. John Stachurski & Vance Martin, 2008. "Computing the Distributions of Economic Models via Simulation," Econometrica, Econometric Society, vol. 76(2), pages 443-450, March.
    4. J. Jimenez & R. Biscay & T. Ozaki, 2005. "Inference Methods for Discretely Observed Continuous-Time Stochastic Volatility Models: A Commented Overview," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(2), pages 109-141, June.
    5. Siddhartha Chib & Michael K Pitt & Neil Shephard, 2004. "Likelihood based inference for diffusion driven models," OFRC Working Papers Series 2004fe17, Oxford Financial Research Centre.
    6. A. Hurn & J. Jeisman & K. Lindsay, 2007. "Teaching an Old Dog New Tricks: Improved Estimation of the Parameters of Stochastic Differential Equations by Numerical Solution of the Fokker-Planck Equation," NCER Working Paper Series 9, National Centre for Econometric Research.
    7. Osnat Stramer & Jun Yan, 2007. "Asymptotics of an Efficient Monte Carlo Estimation for the Transition Density of Diffusion Processes," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 483-496, December.
    8. Isambi Mbalawata & Simo Särkkä & Heikki Haario, 2013. "Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering," Computational Statistics, Springer, vol. 28(3), pages 1195-1223, June.
    9. Umberto Picchini & Andrea De Gaetano & Susanne Ditlevsen, 2010. "Stochastic Differential Mixed‐Effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 67-90, March.
    10. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    11. Andrew D. Sanford & Gael Martin, 2004. "Bayesian Analysis of Continuous Time Models of the Australian Short Rate," Monash Econometrics and Business Statistics Working Papers 11/04, Monash University, Department of Econometrics and Business Statistics.
    12. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Teaching an old dog new tricks: Improved estimation of the parameters of SDEs by numerical solution of the Fokker-Planck equation," Stan Hurn Discussion Papers 2006-01, School of Economics and Finance, Queensland University of Technology.
    13. Andrew D. Sanford & Gael M. Martin, 2006. "Bayesian comparison of several continuous time models of the Australian short rate," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 46(2), pages 309-326, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:wyi:journl:002108 is not listed on IDEAS
    2. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    3. Cai, Zongwu & Hong, Yongmiao, 2003. "Nonparametric Methods in Continuous-Time Finance: A Selective Review," SFB 373 Discussion Papers 2003,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    4. Teresa Corzo Santamaría & Javier Gómez Biscarri, 2005. "Nonparametric estimation of convergence of interest rates: Effects on bond pricing," Spanish Economic Review, Springer;Spanish Economic Association, vol. 7(3), pages 167-190, September.
    5. Jun Yu & Peter C. B. Phillips, 2001. "A Gaussian approach for continuous time models of the short-term interest rate," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-3.
    6. Mahdavi, Mahnaz, 2008. "A comparison of international short-term rates under no arbitrage condition," Global Finance Journal, Elsevier, vol. 18(3), pages 303-318.
    7. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    8. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    9. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    10. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    11. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
    12. Tauchen, George E., 1995. "New Minimum Chi-Square Methods in Empirical Finance," Working Papers 95-42, Duke University, Department of Economics.
    13. Jin-Chuan Duan & Kris Jacobs, 2001. "Short and Long Memory in Equilibrium Interest Rate Dynamics," CIRANO Working Papers 2001s-22, CIRANO.
    14. Duan, Jin-Chuan & Jacobs, Kris, 2008. "Is long memory necessary? An empirical investigation of nonnegative interest rate processes," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 567-581, June.
    15. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    16. Kristensen, Dennis, 2004. "Estimation in two classes of semiparametric diffusion models," LSE Research Online Documents on Economics 24739, London School of Economics and Political Science, LSE Library.
    17. Tunaru, Diana, 2017. "Gaussian estimation and forecasting of the U.K. yield curve with multi-factor continuous-time models," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 119-129.
    18. Christiansen, Charlotte, 2005. "Multivariate term structure models with level and heteroskedasticity effects," Journal of Banking & Finance, Elsevier, vol. 29(5), pages 1037-1057, May.
    19. Suardi, Sandy, 2008. "Are levels effects important in out-of-sample performance of short rate models?," Economics Letters, Elsevier, vol. 99(1), pages 181-184, April.
    20. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    21. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Teaching an old dog new tricks: Improved estimation of the parameters of SDEs by numerical solution of the Fokker-Planck equation," Stan Hurn Discussion Papers 2006-01, School of Economics and Finance, Queensland University of Technology.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:24:y:2003:i:1:p:45-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.