IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v37y2010i1p67-90.html
   My bibliography  Save this article

Stochastic Differential Mixed‐Effects Models

Author

Listed:
  • UMBERTO PICCHINI
  • ANDREA DE GAETANO
  • SUSANNE DITLEVSEN

Abstract

. Stochastic differential equations have been shown useful in describing random continuous time processes. Biomedical experiments often imply repeated measurements on a series of experimental units and differences between units can be represented by incorporating random effects into the model. When both system noise and random effects are considered, stochastic differential mixed‐effects models ensue. This class of models enables the simultaneous representation of randomness in the dynamics of the phenomena being considered and variability between experimental units, thus providing a powerful modelling tool with immediate applications in biomedicine and pharmacokinetic/pharmacodynamic studies. In most cases the likelihood function is not available, and thus maximum likelihood estimation of the unknown parameters is not possible. Here we propose a computationally fast approximated maximum likelihood procedure for the estimation of the non‐random parameters and the random effects. The method is evaluated on simulations from some famous diffusion processes and on real data sets.

Suggested Citation

  • Umberto Picchini & Andrea De Gaetano & Susanne Ditlevsen, 2010. "Stochastic Differential Mixed‐Effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 67-90, March.
  • Handle: RePEc:bla:scjsta:v:37:y:2010:i:1:p:67-90
    DOI: 10.1111/j.1467-9469.2009.00665.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2009.00665.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2009.00665.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
    2. Lo, Andrew W., 1988. "Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data," Econometric Theory, Cambridge University Press, vol. 4(2), pages 231-247, August.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. João Nicolau, 2002. "A new technique for simulating the likelihood of stochastic differential equations," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 91-103, June.
    5. J. Guedj & R. Thiébaut & D. Commenges, 2007. "Maximum Likelihood Estimation in Dynamical Models of HIV," Biometrics, The International Biometric Society, vol. 63(4), pages 1198-1206, December.
    6. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    7. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
    8. Wang, Jing, 2007. "EM algorithms for nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3244-3256, March.
    9. A. S. Hurn & K. A. Lindsay & V. L. Martin, 2003. "On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential Equations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 45-63, January.
    10. Kuhn, E. & Lavielle, M., 2005. "Maximum likelihood estimation in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1020-1038, June.
    11. Egorov, Alexei V. & Li, Haitao & Xu, Yuewu, 2003. "Maximum likelihood estimation of time-inhomogeneous diffusions," Journal of Econometrics, Elsevier, vol. 114(1), pages 107-139, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Comte, F. & Genon-Catalot, V. & Samson, A., 2013. "Nonparametric estimation for stochastic differential equations with random effects," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2522-2551.
    2. Delattre, Maud & Genon-Catalot, Valentine & Larédo, Catherine, 2018. "Parametric inference for discrete observations of diffusion processes with mixed effects," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1929-1957.
    3. Picchini, Umberto & Ditlevsen, Susanne, 2011. "Practical estimation of high dimensional stochastic differential mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1426-1444, March.
    4. Oscar García, 2019. "Estimating reducible stochastic differential equations by conversion to a least-squares problem," Computational Statistics, Springer, vol. 34(1), pages 23-46, March.
    5. Dai, Min & Duan, Jinqiao & Liao, Junjun & Wang, Xiangjun, 2021. "Maximum likelihood estimation of stochastic differential equations with random effects driven by fractional Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    6. Fabienne Comte & Nicolas Marie, 2021. "Nonparametric estimation for I.I.D. paths of fractional SDE," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 669-705, October.
    7. Maud Delattre & Valentine Genon-Catalot & Catherine Larédo, 2018. "Approximate maximum likelihood estimation for stochastic differential equations with random effects in the drift and the diffusion," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 953-983, November.
    8. Giorgos Sermaidis & Omiros Papaspiliopoulos & Gareth O. Roberts & Alexandros Beskos & Paul Fearnhead, 2013. "Markov Chain Monte Carlo for Exact Inference for Diffusions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 294-321, June.
    9. Charlotte Dion, 2016. "Nonparametric estimation in a mixed-effect Ornstein–Uhlenbeck model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 919-951, November.
    10. Maud Delattre & Valentine Genon-Catalot & Adeline Samson, 2013. "Maximum Likelihood Estimation for Stochastic Differential Equations with Random Effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 322-343, June.
    11. Nelson T. Jamba & Gonçalo Jacinto & Patrícia A. Filipe & Carlos A. Braumann, 2022. "Likelihood Function through the Delta Approximation in Mixed SDE Models," Mathematics, MDPI, vol. 10(3), pages 1-20, January.
    12. Wiqvist, Samuel & Golightly, Andrew & McLean, Ashleigh T. & Picchini, Umberto, 2021. "Efficient inference for stochastic differential equation mixed-effects models using correlated particle pseudo-marginal algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    13. B. L. S. Prakasa Rao, 2021. "Nonparametric Estimation for Stochastic Differential Equations Driven by Mixed Fractional Brownian Motion with Random Effects," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 554-568, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osnat Stramer & Jun Yan, 2007. "Asymptotics of an Efficient Monte Carlo Estimation for the Transition Density of Diffusion Processes," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 483-496, December.
    2. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    3. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    4. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    5. J. Jimenez & R. Biscay & T. Ozaki, 2005. "Inference Methods for Discretely Observed Continuous-Time Stochastic Volatility Models: A Commented Overview," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(2), pages 109-141, June.
    6. Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
    7. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Teaching an old dog new tricks: Improved estimation of the parameters of SDEs by numerical solution of the Fokker-Planck equation," Stan Hurn Discussion Papers 2006-01, School of Economics and Finance, Queensland University of Technology.
    8. Siddhartha Chib & Michael K Pitt & Neil Shephard, 2004. "Likelihood based inference for diffusion driven models," OFRC Working Papers Series 2004fe17, Oxford Financial Research Centre.
    9. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    10. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    11. Golightly, A. & Wilkinson, D.J., 2008. "Bayesian inference for nonlinear multivariate diffusion models observed with error," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1674-1693, January.
    12. Xiao Huang, 2011. "Quasi‐maximum likelihood estimation of discretely observed diffusions," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 241-256, July.
    13. Peter C. B. Phillips & Jun Yu, 2009. "Simulation-Based Estimation of Contingent-Claims Prices," Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3669-3705, September.
    14. Kalogeropoulos, Konstantinos & Dellaportas, Petros & Roberts, Gareth O., 2007. "Likelihood-based inference for correlated diffusions," MPRA Paper 5696, University Library of Munich, Germany.
    15. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
    16. Kevin W. Lu & Phillip J. Paine & Simon P. Preston & Andrew T. A. Wood, 2022. "Approximate maximum likelihood estimation for one‐dimensional diffusions observed on a fine grid," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1085-1114, September.
    17. A. Hurn & J. Jeisman & K. Lindsay, 2007. "Teaching an Old Dog New Tricks: Improved Estimation of the Parameters of Stochastic Differential Equations by Numerical Solution of the Fokker-Planck Equation," NCER Working Paper Series 9, National Centre for Econometric Research.
    18. Paul Fearnhead & Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Particle filters for partially observed diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 755-777, September.
    19. Jun Yu & Peter C. B. Phillips, 2001. "A Gaussian approach for continuous time models of the short-term interest rate," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-3.
    20. Nina Munkholt Jakobsen & Michael Sørensen, 2015. "Efficient Estimation for Diffusions Sampled at High Frequency Over a Fixed Time Interval," CREATES Research Papers 2015-33, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:37:y:2010:i:1:p:67-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.