IDEAS home Printed from https://ideas.repec.org/p/sbs/wpsefe/2004fe17.html

Likelihood based inference for diffusion driven models

Author

Listed:
  • Siddhartha Chib
  • Michael K Pitt
  • Neil Shephard

Abstract

This paper provides methods for carrying out likelihood based inference for diffusion driven models, for example discretely observed multivariate diffusions, continuous time stochastic volatility models and counting process models. The diffusions can potentially be non-stationary. Although our methods are sampling based, making use of Markov chain Monte Carlo methods to sample the posterior distribution of the relevant unknowns, our general strategies and details are different from previous work along these lines. The methods we develop are simple to implement and simulation efficient. Importantly, unlike previous methods, the performance of our technique is not worsened, in fact it improves, as the degree of latent augmentation is increased to reduce the bias of the Euler approximation. In addition, our method is not subject to a degeneracy that afflicts previous techniques when the degree of latent augmentation is increased. We also discuss issues of model choice, model checking and filtering. The techniques and ideas are applied to both simulated and real data.

Suggested Citation

  • Siddhartha Chib & Michael K Pitt & Neil Shephard, 2004. "Likelihood based inference for diffusion driven models," OFRC Working Papers Series 2004fe17, Oxford Financial Research Centre.
  • Handle: RePEc:sbs:wpsefe:2004fe17
    as

    Download full text from publisher

    File URL: http://www.finance.ox.ac.uk/file_links/finecon_papers/2004fe17.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aliu, A. Hassan & Abiodun A. A. & Ipinyomi R.A., 2017. "Statistical Inference for Discretely Observed Diffusion Epidemic Models," International Journal of Mathematics Research, Conscientia Beam, vol. 6(1), pages 29-35.
    2. Nicolas Chopin & Mathieu Gerber, 2017. "Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes," Working Papers 2017-35, Center for Research in Economics and Statistics.
    3. Marcin Mider & Paul A. Jenkins & Murray Pollock & Gareth O. Roberts, 2022. "The Computational Cost of Blocking for Sampling Discretely Observed Diffusions," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3007-3027, December.
    4. Matthew M. Graham & Alexandre H. Thiery & Alexandros Beskos, 2022. "Manifold Markov chain Monte Carlo methods for Bayesian inference in diffusion models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1229-1256, September.
    5. Osnat Stramer & Jun Yan, 2007. "Asymptotics of an Efficient Monte Carlo Estimation for the Transition Density of Diffusion Processes," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 483-496, December.
    6. repec:wyi:journl:002117 is not listed on IDEAS
    7. Martin J. Lenardon & Anna Amirdjanova, 2006. "Interaction between stock indices via changepoint analysis," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 22(5‐6), pages 573-586, September.
    8. repec:wyi:journl:002142 is not listed on IDEAS
    9. Fernández-Villaverde, Jesús & Guerrón-Quintana, Pablo & Rubio-Ramírez, Juan F., 2015. "Estimating dynamic equilibrium models with stochastic volatility," Journal of Econometrics, Elsevier, vol. 185(1), pages 216-229.
    10. Peavoy, Daniel & Franzke, Christian L.E. & Roberts, Gareth O., 2015. "Systematic physics constrained parameter estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 182-199.
    11. S. C. Kou & Benjamin P. Olding & Martin Lysy & Jun S. Liu, 2012. "A Multiresolution Method for Parameter Estimation of Diffusion Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1558-1574, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbs:wpsefe:2004fe17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxine Collett (email available below). General contact details of provider: https://edirc.repec.org/data/frcoxuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.