IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Asymptotic Properties of Monte Carlo Estimators of Diffusion Processes

  • Marcel Rindisbacher
  • Jérôme Detemple
  • René Garcia

This paper studies the limit distributions of Monte Carlo estimators of diffusion processes. Two types of estimators are examined. The first one is based on the Euler scheme applied to the original processes; the second applies the Euler scheme to a variance-stabilizing transformation of the processes. We show that the transformation increases the speed of convergence of the Euler scheme. The limit distribution of this estimator is derived in explicit form and is found to be non-centered. We also study estimators of conditional expectations of diffusions with known initial state. Expected approximation errors are characterized and used to construct second-order bias corrected estimators. Such bias correction eliminates the size distortion of asymptotic confidence intervals and allows to examine the relative efficiency of estimators. Finally, we derive the limit distributions of Monte Carlo estimators of conditional expectations with unknown initial state. The variance-stabilizing transformation is again found to increase the speed of convergence. For comparison we also study the Milshtein scheme. We derive new convergence results for this scheme and show that it does not improve on the convergence properties of the Euler scheme with transformation. Our results are illustrated in the context of a dynamic portfolio choice problem and of simulated-based estimation of diffusion processes

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Econometric Society in its series Econometric Society 2004 North American Winter Meetings with number 483.

in new window

Date of creation: 11 Aug 2004
Date of revision:
Handle: RePEc:ecm:nawm04:483
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Eraker, Bjorn, 2001. "MCMC Analysis of Diffusion Models with Application to Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 177-91, April.
  2. repec:cup:etheor:v:12:y:1996:i:4:p:657-81 is not listed on IDEAS
  3. Broze, Laurence & Scaillet, Olivier & Zako an, Jean-Michel, 1998. "Quasi-Indirect Inference For Diffusion Processes," Econometric Theory, Cambridge University Press, vol. 14(02), pages 161-186, April.
  4. Darrell Duffie & Philip Protter, 1992. "From Discrete- to Continuous-Time Finance: Weak Convergence of the Financial Gain Process," Mathematical Finance, Wiley Blackwell, vol. 2(1), pages 1-15.
  5. Jérôme B. Detemple & René Garcia & Marcel Rindisbacher, 2003. "A Monte Carlo Method for Optimal Portfolios," Journal of Finance, American Finance Association, vol. 58(1), pages 401-446, 02.
  6. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
  7. Tauchen, George E. & Gallant, A. Ronald, 1995. "Which Moments to Match," Working Papers 95-20, Duke University, Department of Economics.
  8. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
  9. Elerian, O. & Chib, S. & Shephard, N., 1998. "Likelihood INference for Discretely Observed Non-linear Diffusions," Economics Papers 146, Economics Group, Nuffield College, University of Oxford.
  10. Jérôme Detemple & René Garcia & Marcel Rindisbacher, 2005. "Representation formulas for Malliavin derivatives of diffusion processes," Finance and Stochastics, Springer, vol. 9(3), pages 349-367, 07.
  11. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
  12. Gourieroux, C & Monfort, A & Renault, E, 1993. "Indirect Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S85-118, Suppl. De.
  13. Lo, Andrew W., 1988. "Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data," Econometric Theory, Cambridge University Press, vol. 4(02), pages 231-247, August.
  14. Gallant, A. Ronald & Tauchen, George, 2002. "Simulated Score Methods and Indirect Inference for Continuous-time Models," Working Papers 02-09, Duke University, Department of Economics.
  15. Singleton, Kenneth J., 2001. "Estimation of affine asset pricing models using the empirical characteristic function," Journal of Econometrics, Elsevier, vol. 102(1), pages 111-141, May.
  16. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
  17. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
  18. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
  19. Darrell Duffie & Kenneth J. Singleton, 1990. "Simulated Moments Estimation of Markov Models of Asset Prices," NBER Technical Working Papers 0087, National Bureau of Economic Research, Inc.
  20. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
  21. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, 02.
  22. Hansen, Lars Peter, 1985. "A method for calculating bounds on the asymptotic covariance matrices of generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 203-238.
  23. Lars Peter Hansen & Jose Alexandre Scheinkman, 1993. "Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes," NBER Technical Working Papers 0141, National Bureau of Economic Research, Inc.
  24. BALLY Vlad & TALAY Denis, 1996. "The Law of the Euler Scheme for Stochastic Differential Equations: II. Convergence Rate of the Density," Monte Carlo Methods and Applications, De Gruyter, vol. 2(2), pages 93-128, December.
  25. Chamberlain, Gary, 1992. "Efficiency Bounds for Semiparametric Regression," Econometrica, Econometric Society, vol. 60(3), pages 567-96, May.
  26. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
  27. Yacine Aït-Sahalia, 1999. "Transition Densities for Interest Rate and Other Nonlinear Diffusions," Journal of Finance, American Finance Association, vol. 54(4), pages 1361-1395, 08.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:nawm04:483. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.