IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v83y2013i2p602-607.html
   My bibliography  Save this article

Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process

Author

Listed:
  • Alfonsi, Aurélien

Abstract

We study the convergence of a drift implicit scheme for one-dimensional SDEs that was considered by Alfonsi (2005) for the Cox–Ingersoll–Ross (CIR) process. Under general conditions, we obtain a strong convergence of order 1. In the CIR case, Dereich et al. (2012) have shown recently a strong convergence of order 1/2 for this scheme. Here, we obtain a strong convergence of order 1 under more restrictive assumptions on the CIR parameters.

Suggested Citation

  • Alfonsi, Aurélien, 2013. "Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 602-607.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:2:p:602-607
    DOI: 10.1016/j.spl.2012.10.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212004063
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Detemple, Jerome & Garcia, Rene & Rindisbacher, Marcel, 2006. "Asymptotic properties of Monte Carlo estimators of diffusion processes," Journal of Econometrics, Elsevier, vol. 134(1), pages 1-68, September.
    2. Alfonsi Aurélien, 2005. "On the discretization schemes for the CIR (and Bessel squared) processes," Monte Carlo Methods and Applications, De Gruyter, vol. 11(4), pages 355-384, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halidias Nikolaos, 2015. "Constructing positivity preserving numerical schemes for the two-factor CIR model," Monte Carlo Methods and Applications, De Gruyter, vol. 21(4), pages 313-323, December.
    2. Andrei Cozma & Christoph Reisinger, 2015. "Exponential integrability properties of Euler discretization schemes for the Cox-Ingersoll-Ross process," Papers 1601.00919, arXiv.org.
    3. Nikolaos Halidias & Ioannis Stamatiou, 2015. "Approximating explicitly the mean reverting CEV process," Papers 1502.03018, arXiv.org, revised May 2015.
    4. Andrei Cozma & Christoph Reisinger, 2017. "Strong order 1/2 convergence of full truncation Euler approximations to the Cox-Ingersoll-Ross process," Papers 1704.07321, arXiv.org.
    5. Jean-Francois Chassagneux & Antoine Jacquier & Ivo Mihaylov, 2014. "An explicit Euler scheme with strong rate of convergence for financial SDEs with non-Lipschitz coefficients," Papers 1405.3561, arXiv.org, revised Apr 2016.
    6. Andrei Cozma & Christoph Reisinger, 2017. "Strong convergence rates for Euler approximations to a class of stochastic path-dependent volatility models," Papers 1706.07375, arXiv.org.
    7. Halidias Nikolaos, 2015. "A new numerical scheme for the CIR process," Monte Carlo Methods and Applications, De Gruyter, vol. 21(3), pages 245-253, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:2:p:602-607. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.