IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/5696.html

Likelihood-based inference for correlated diffusions

Author

Listed:
  • Kalogeropoulos, Konstantinos
  • Dellaportas, Petros
  • Roberts, Gareth O.

Abstract

We address the problem of likelihood based inference for correlated diffusion processes using Markov chain Monte Carlo (MCMC) techniques. Such a task presents two interesting problems. First, the construction of the MCMC scheme should ensure that the correlation coefficients are updated subject to the positive definite constraints of the diffusion matrix. Second, a diffusion may only be observed at a finite set of points and the marginal likelihood for the parameters based on these observations is generally not available. We overcome the first issue by using the Cholesky factorisation on the diffusion matrix. To deal with the likelihood unavailability, we generalise the data augmentation framework of Roberts and Stramer (2001 Biometrika 88(3):603-621) to d-dimensional correlated diffusions including multivariate stochastic volatility models. Our methodology is illustrated through simulation based experiments and with daily EUR /USD, GBP/USD rates together with their implied volatilities.

Suggested Citation

  • Kalogeropoulos, Konstantinos & Dellaportas, Petros & Roberts, Gareth O., 2007. "Likelihood-based inference for correlated diffusions," MPRA Paper 5696, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:5696
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/5696/1/MPRA_paper_5696.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Giudici & Laura Parisi, 2016. "CoRisk: measuring systemic risk through default probability contagion," DEM Working Papers Series 116, University of Pavia, Department of Economics and Management.
    2. Paolo Giudici & Laura Parisi, 2017. "Sovereign risk in the Euro area: a multivariate stochastic process approach," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1995-2008, December.
    3. Beskos, Alexandros & Kalogeropoulos, Konstantinos & Pazos, Erik, 2013. "Advanced MCMC methods for sampling on diffusion pathspace," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1415-1453.
    4. Kalogeropoulos, Konstantinos & Roberts, Gareth O. & Dellaportas, Petros, 2007. "Inference for stochastic volatility model using time change transformations," MPRA Paper 5697, University Library of Munich, Germany.
    5. Paolo Giudici & Laura Parisi, 2015. "Modeling Systemic Risk with Correlated Stochastic Processes," DEM Working Papers Series 110, University of Pavia, Department of Economics and Management.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:5696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.