IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v70y2008i4p755-777.html
   My bibliography  Save this article

Particle filters for partially observed diffusions

Author

Listed:
  • Paul Fearnhead
  • Omiros Papaspiliopoulos
  • Gareth O. Roberts

Abstract

We introduce a novel particle filter scheme for a class of partially observed multivariate diffusions. We consider a variety of observation schemes, including diffusion observed with error, observation of a subset of the components of the multivariate diffusion and arrival times of a Poisson process whose intensity is a known function of the diffusion (Cox process). Unlike currently available methods, our particle filters do not require approximations of the transition and/or the observation density by using time discretizations. Instead, they build on recent methodology for the exact simulation of the diffusion process and the unbiased estimation of the transition density. We introduce the generalized Poisson estimator, which generalizes the Poisson estimator of Beskos and co-workers. A central limit theorem is given for our particle filter scheme. Copyright (c) 2008 Royal Statistical Society.

Suggested Citation

  • Paul Fearnhead & Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Particle filters for partially observed diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 755-777.
  • Handle: RePEc:bla:jorssb:v:70:y:2008:i:4:p:755-777
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9868.2008.00661.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382.
    2. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    3. João Nicolau, 2002. "A new technique for simulating the likelihood of stochastic differential equations," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 91-103, June.
    4. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    5. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
    6. S. C. Kou & X. Sunney Xie & Jun S. Liu, 2005. "Bayesian analysis of single-molecule experimental data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 469-506.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Briers & Arnaud Doucet & Simon Maskell, 2010. "Smoothing algorithms for state–space models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 61-89, February.
    2. Iacus, Stefano Maria & Uchida, Masayuki & Yoshida, Nakahiro, 2009. "Parametric estimation for partially hidden diffusion processes sampled at discrete times," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1580-1600, May.
    3. Konstantinos Kalogeropoulos & Gareth O. Roberts & Petros Dellaportas, 2007. "Inference for stochastic volatility models using time change transformations," Papers 0711.1594, arXiv.org.
    4. Shoji, Isao, 2013. "Filtering for partially observed diffusion and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4966-4976.
    5. Paul Fearnhead & Omiros Papaspiliopoulos & Gareth O. Roberts & Andrew Stuart, 2010. "Random-weight particle filtering of continuous time processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 497-512.
    6. N. Chopin & P. E. Jacob & O. Papaspiliopoulos, 2013. "SMC-super-2: an efficient algorithm for sequential analysis of state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 397-426, June.
    7. Hermann Singer, 2011. "Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 375-413, December.
    8. Murray, Lawrence M., 2015. "Bayesian State-Space Modelling on High-Performance Hardware Using LibBi," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i10).
    9. Johansen, Adam M. & Doucet, Arnaud, 2008. "A note on auxiliary particle filters," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1498-1504, September.
    10. Jourdain Benjamin & Sbai Mohamed, 2007. "Exact retrospective Monte Carlo computation of arithmetic average Asian options," Monte Carlo Methods and Applications, De Gruyter, vol. 13(2), pages 135-171, July.
    11. Peter J. Diggle & Raquel Menezes & Ting-li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:70:y:2008:i:4:p:755-777. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.