IDEAS home Printed from https://ideas.repec.org/p/bep/unimip/unimi-1042.html

Parametric estimation for partially hidden diffusion processes sampled at discrete times

Author

Listed:
  • Stefano Iacus

    (Department of Economics, Business and Statistics, University of Milan, IT)

  • Masayuki Uchida

    (Departement of Mathematical Sciences, Faculty of Mathematics, Kyushu University, Ropponmatsu, Fukuoka 810-8560, Japan)

  • Nakahiro Yoshida

    (Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914 Japan)

Abstract

A one dimensional diffusion process $X=\{X_t, 0\leq t \leq T\}$ is observed only when its path lies over some threshold $\tau$. On the basis of the observable part of the trajectory, the problem is to estimate finite dimensional parameter in both drift and diffusion coefficient under a discrete sampling scheme. It is assumed that the sampling occurs at regularly spaced times intervals of length $h_n$ such that $h_n\cdot n =T$. The asymptotic is considered as $T\to\infty$, $n\to\infty$, $n h_n^2\to 0$. Consistency and asymptotic normality for estimators of parameters in both drift and diffusion coefficient is proved.

Suggested Citation

  • Stefano Iacus & Masayuki Uchida & Nakahiro Yoshida, 2006. "Parametric estimation for partially hidden diffusion processes sampled at discrete times," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1042, Universitá degli Studi di Milano.
  • Handle: RePEc:bep:unimip:unimi-1042
    Note: oai:cdlib1:unimi-1042
    as

    Download full text from publisher

    File URL: http://services.bepress.com/unimi/statistics/art18
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmanuel Gobet & Gustaw Matulewicz, 2017. "Parameter estimation of Ornstein–Uhlenbeck process generating a stochastic graph," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 211-235, July.
    2. Yoshida, Nakahiro, 2013. "Martingale expansion in mixed normal limit," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 887-933.
    3. A. Gregorio & S. M. Iacus, 2019. "Empirical $$L^2$$ L 2 -distance test statistics for ergodic diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 233-261, July.
    4. Shen, Leyi & Xia, Xiaoyu & Yan, Litan, 2022. "Least squares estimation for the linear self-repelling diffusion driven by α-stable motions," Statistics & Probability Letters, Elsevier, vol. 181(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:unimip:unimi-1042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/damilit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.