IDEAS home Printed from https://ideas.repec.org/p/aah/create/2007-46.html
   My bibliography  Save this paper

Efficient estimation for ergodic diffusions sampled at high frequency

Author

Listed:
  • Michael Sørensen

    (School of Economics and Management, University of Aarhus, Denmark and CREATES)

Abstract

A general theory of efficient estimation for ergodic diffusions sampled at high fre- quency is presented. High frequency sampling is now possible in many applications, in particular in finance. The theory is formulated in term of approximate martingale estimating functions and covers a large class of estimators including most of the pre- viously proposed estimators for diffusion processes, for instance GMM-estimators and the maximum likelihood estimator. Simple conditions are given that ensure rate optimality, where estimators of parameters in the diffusion coefficient converge faster than estimators of parameters in the drift coefficient, and for efficiency. The conditions turn out to be equal to those implying small delta-optimality in the sense of Jacobsen and thus gives an interpretation of this concept in terms of classical sta- tistical concepts. Optimal martingale estimating functions in the sense of Godambe and Heyde are shown to be give rate optimal and efficient estimators under weak conditions.

Suggested Citation

  • Michael Sørensen, 2008. "Efficient estimation for ergodic diffusions sampled at high frequency," CREATES Research Papers 2007-46, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2007-46
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/07/rp07_46.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    2. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    3. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
    4. Yacine Ait--Sahalia & Per A. Mykland, 2003. "The Effects of Random and Discrete Sampling when Estimating Continuous--Time Diffusions," Econometrica, Econometric Society, vol. 71(2), pages 483-549, March.
    5. Yoshida, Nakahiro, 1992. "Estimation for diffusion processes from discrete observation," Journal of Multivariate Analysis, Elsevier, vol. 41(2), pages 220-242, May.
    6. Bent Jesper Christensen & Michael Sørensen, 2008. "Optimal inference in dynamic models with conditional moment restrictions," CREATES Research Papers 2008-51, Department of Economics and Business Economics, Aarhus University.
    7. Leah Kelly & Eckhard Platen & Michael Sorensen, 2003. "Estimating for Discretely Observed Diffusions Using Transform Functions," Research Paper Series 96, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Hansen, Lars Peter & Alexandre Scheinkman, Jose & Touzi, Nizar, 1998. "Spectral methods for identifying scalar diffusions," Journal of Econometrics, Elsevier, vol. 86(1), pages 1-32, June.
    9. Asger Roer Pedersen, 2000. "Estimating the Nitrous Oxide Emission Rate from the Soil Surface by Means of a Diffusion Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(3), pages 385-403, September.
    10. Martin Jacobsen, 2001. "Discretely Observed Diffusions: Classes of Estimating Functions and Small Δ‐optimality," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(1), pages 123-149, March.
    11. Nakahiro Yoshida, 1990. "Asymptotic behavior of M-estimator and related random field for diffusion process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 221-251, June.
    12. Overbeck, Ludger & Rydén, Tobias, 1997. "Estimation in the Cox-Ingersoll-Ross Model," Econometric Theory, Cambridge University Press, vol. 13(3), pages 430-461, June.
    13. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kengo Kamatani & Masayuki Uchida, 2015. "Hybrid multi-step estimators for stochastic differential equations based on sampled data," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 177-204, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Sørensen, 2008. "Parametric inference for discretely sampled stochastic differential equations," CREATES Research Papers 2008-18, Department of Economics and Business Economics, Aarhus University.
    2. J. Jimenez & R. Biscay & T. Ozaki, 2005. "Inference Methods for Discretely Observed Continuous-Time Stochastic Volatility Models: A Commented Overview," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(2), pages 109-141, June.
    3. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    4. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    5. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    6. Nina Munkholt Jakobsen & Michael Sørensen, 2015. "Efficient Estimation for Diffusions Sampled at High Frequency Over a Fixed Time Interval," CREATES Research Papers 2015-33, Department of Economics and Business Economics, Aarhus University.
    7. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    8. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Teaching an old dog new tricks: Improved estimation of the parameters of SDEs by numerical solution of the Fokker-Planck equation," Stan Hurn Discussion Papers 2006-01, School of Economics and Finance, Queensland University of Technology.
    9. Gutiérrez, R. & Gutiérrez-Sánchez, R. & Nafidi, A., 2009. "The trend of the total stock of the private car-petrol in Spain: Stochastic modelling using a new gamma diffusion process," Applied Energy, Elsevier, vol. 86(1), pages 18-24, January.
    10. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    11. A. Hurn & J. Jeisman & K. Lindsay, 2007. "Teaching an Old Dog New Tricks: Improved Estimation of the Parameters of Stochastic Differential Equations by Numerical Solution of the Fokker-Planck Equation," NCER Working Paper Series 9, National Centre for Econometric Research.
    12. Peter C. B. Phillips & Jun Yu, 2009. "Simulation-Based Estimation of Contingent-Claims Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3669-3705, September.
    13. Xiao Huang, 2011. "Quasi‐maximum likelihood estimation of discretely observed diffusions," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 241-256, July.
    14. Höök, Lars Josef & Lindström, Erik, 2016. "Efficient computation of the quasi likelihood function for discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 426-437.
    15. Ruijun Bu & Ludovic Giet & Kaddour Hadri & Michel Lubrano, 2009. "Modeling Multivariate Interest Rates using Time-Varying Copulas and Reducible Stochastic Differential Equations," Working Papers halshs-00408014, HAL.
    16. Lars Josef Hook & Erik Lindstrom, 2015. "Efficient Computation of the Quasi Likelihood function for Discretely Observed Diffusion Processes," Papers 1509.07751, arXiv.org.
    17. Leah Kelly, 2004. "Inference and Intraday Analysis of Diversified World Stock Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2004.
    18. S. C. Kou & Benjamin P. Olding & Martin Lysy & Jun S. Liu, 2012. "A Multiresolution Method for Parameter Estimation of Diffusion Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1558-1574, December.
    19. Aït-Sahalia, Yacine & Fan, Jianqing & Peng, Heng, 2009. "Nonparametric Transition-Based Tests for Jump Diffusions," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1102-1116.
    20. Mark Trede & Bernd Wilfling, 2007. "Estimating exchange rate dynamics with diffusion processes: an application to Greek EMU data," Empirical Economics, Springer, vol. 33(1), pages 23-39, July.

    More about this item

    Keywords

    Approximate martingale estimating functions; discrete time observation of a diffusion; efficiency; Euler approximation; generalized method of moments; optimal estimating function; optimal rate; small delta-optimality;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2007-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.