IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i1p18-24.html
   My bibliography  Save this article

The trend of the total stock of the private car-petrol in Spain: Stochastic modelling using a new gamma diffusion process

Author

Listed:
  • Gutiérrez, R.
  • Gutiérrez-Sánchez, R.
  • Nafidi, A.

Abstract

The main aim of this study is to model the trend of the evolution of the total stock of private petrol-driven cars. In Spain, as in other EU countries, this trend between 2000 and 2005 differed significantly from that observed from 1986 to 1999. Moreover, it varies greatly from that corresponding to the stock of diesel-driven cars, which consistently presents an exponential Gompertz-type increase. Spain constitutes a typical example of a failure to observe the maximum CO2 emission levels assigned to it by 2012 under the Kyoto Protocol (1992); a significant percentage of these excess emissions is accounted for by the land transport sector, in general, and by the private cars subsector, in particular. This paper proposes a stochastic model based on a new non homogeneous stochastic gamma-type diffusion process which it is a stochastic version of a Gamma function type deterministic growth model considered in Skiadas [1]. We describe its main probabilistic characteristics and establish a statistical methodology by which it can be fitted to real data and obtain medium-term forecasts that, in statistical terms, are quite accurate.

Suggested Citation

  • Gutiérrez, R. & Gutiérrez-Sánchez, R. & Nafidi, A., 2009. "The trend of the total stock of the private car-petrol in Spain: Stochastic modelling using a new gamma diffusion process," Applied Energy, Elsevier, pages 18-24.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:1:p:18-24
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00089-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manuel Arapis & Jiti Gao, 2006. "Empirical Comparisons in Short-Term Interest Rate Models Using Nonparametric Methods," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(2), pages 310-345.
    2. Gutiérrez, R. & Gutiérrez-Sánchez, R. & Nafidi, A., 2006. "Electricity consumption in Morocco: Stochastic Gompertz diffusion analysis with exogenous factors," Applied Energy, Elsevier, vol. 83(10), pages 1139-1151, October.
    3. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, pages 297-316.
    4. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, pages 223-262.
    5. Chan, K C, et al, 1992. " An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    6. Gutiérrez, R. & Nafidi, A. & Gutiérrez Sánchez, R., 2005. "Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model," Applied Energy, Elsevier, vol. 80(2), pages 115-124, February.
    7. Ramón Gutiérrez & Patrica Román & Francisco Torres, 2001. "Inference on some parametric functions in the univeriate lognormal diffusion process with exogenous factors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 357-373, December.
    8. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, pages 335-338.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gutiérrez-Sánchez, R. & Nafidi, A. & Pascual, A. & Ramos-Ábalos, E., 2011. "Three parameter gamma-type growth curve, using a stochastic gamma diffusion model: Computational statistical aspects and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(2), pages 234-243.
    2. Forouzanfar, Mehdi & Doustmohammadi, A. & Hasanzadeh, Samira & Shakouri G, H., 2012. "Transport energy demand forecast using multi-level genetic programming," Applied Energy, Elsevier, vol. 91(1), pages 496-503.
    3. Nafidi, A. & Gutiérrez, R. & Gutiérrez-Sánchez, R. & Ramos-Ábalos, E. & El Hachimi, S., 2016. "Modelling and predicting electricity consumption in Spain using the stochastic Gamma diffusion process with exogenous factors," Energy, Elsevier, vol. 113(C), pages 309-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:1:p:18-24. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.