IDEAS home Printed from https://ideas.repec.org/p/mil/wpdepa/2011-37.html
   My bibliography  Save this paper

On a family of test statistics for discretely observed diffusion processes

Author

Listed:
  • Alessandro DE GREGORIO
  • Stefano Maria IACUS

Abstract

We consider parametric hypotheses testing for multidimensional ergodic diffusion processes observed at discrete time. We propose a family of test statistics, related to the so called phi-divergence measures. By taking into account the quasi-likelihood approach developed for studying the stochastic differential equations, it is proved that the tests in this family are all asymptotically distribution free. In other words, our test statistics weakly converge to the chi squared distribution. Furthermore, our test statistic is compared with the quasi likelihood ratio test. In the case of contiguous alternatives, it is also possible to study in detail the power function of the tests. Although all the tests in this family are asymptotically equivalent, we show by Monte Carlo analysis that, in the small sample case, the performance of the test strictly depends on the choice of the function phi. Furthermore, in this framework, the simulations show that there are not uniformly most powerful tests.

Suggested Citation

  • Alessandro DE GREGORIO & Stefano Maria IACUS, 2011. "On a family of test statistics for discretely observed diffusion processes," Departmental Working Papers 2011-37, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
  • Handle: RePEc:mil:wpdepa:2011-37
    as

    Download full text from publisher

    File URL: http://wp.demm.unimi.it/files/wp/2011/DEMM-2011_037wp.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Morales, D. & Pardo, L. & Vajda, I., 1997. "Some New Statistics for Testing Hypotheses in Parametric Models, ," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 137-168, July.
    2. Yoshida, Nakahiro, 1992. "Estimation for diffusion processes from discrete observation," Journal of Multivariate Analysis, Elsevier, vol. 41(2), pages 220-242, May.
    3. Giet, Ludovic & Lubrano, Michel, 2008. "A minimum Hellinger distance estimator for stochastic differential equations: An application to statistical inference for continuous time interest rate models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2945-2965, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Papanicolaou, Alex & Giesecke, Kay, 2016. "Variation-based tests for volatility misspecification," Journal of Econometrics, Elsevier, vol. 191(1), pages 217-230.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Gregorio, A. & Iacus, S.M., 2013. "On a family of test statistics for discretely observed diffusion processes," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 292-316.
    2. Alessandro DE GREGORIO & Stefano Maria IACUS, 2009. "Pseudo phi-divergence test statistics and multidimensional Ito processes," Departmental Working Papers 2009-48, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    3. A. Gregorio & S. M. Iacus, 2019. "Empirical $$L^2$$ L 2 -distance test statistics for ergodic diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 233-261, July.
    4. Zhang, Shulin & Song, Peter X.-K. & Shi, Daimin & Zhou, Qian M., 2012. "Information ratio test for model misspecification on parametric structures in stochastic diffusion models," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3975-3987.
    5. Elotma H, 2015. "Parameter estimation for stochastic diffusion process," Working Papers hal-01081470, HAL.
    6. Samson, Adeline & Thieullen, Michèle, 2012. "A contrast estimator for completely or partially observed hypoelliptic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2521-2552.
    7. Broniatowski, M. & Leorato, S., 2006. "An estimation method for the Neyman chi-square divergence with application to test of hypotheses," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1409-1436, July.
    8. L. Ferrante & S. Bompadre & L. Possati & L. Leone, 2000. "Parameter Estimation in a Gompertzian Stochastic Model for Tumor Growth," Biometrics, The International Biometric Society, vol. 56(4), pages 1076-1081, December.
    9. Shoji, Isao, 1997. "A note on asymptotic properties of the estimator derived from the Euler method for diffusion processes at discrete times," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 153-159, December.
    10. Gatzert, Nadine & Martin, Alexander & Schmidt, Martin & Seith, Benjamin & Vogl, Nikolai, 2021. "Portfolio optimization with irreversible long-term investments in renewable energy under policy risk: A mixed-integer multistage stochastic model and a moving-horizon approach," European Journal of Operational Research, Elsevier, vol. 290(2), pages 734-748.
    11. Iacus, Stefano Maria & Uchida, Masayuki & Yoshida, Nakahiro, 2009. "Parametric estimation for partially hidden diffusion processes sampled at discrete times," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1580-1600, May.
    12. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    13. Uchida, Masayuki, 2008. "Approximate martingale estimating functions for stochastic differential equations with small noises," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1706-1721, September.
    14. Sangyeol Lee & Hiroki Masuda, 2010. "Jarque–Bera normality test for the driving Lévy process of a discretely observed univariate SDE," Statistical Inference for Stochastic Processes, Springer, vol. 13(2), pages 147-161, June.
    15. Qinwen Zhu & Hui Liu & Chengfeng Sun, 2019. "Edgeworth Expansion For The Distribution Of The Maximum Likelihood Estimate In The Vasicek Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-26, March.
    16. Diks, Cees & Wang, Juanxi, 2016. "Can a stochastic cusp catastrophe model explain housing market crashes?," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 68-88.
    17. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    18. Chiara Amorino & Arnaud Gloter, 2020. "Contrast function estimation for the drift parameter of ergodic jump diffusion process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 279-346, June.
    19. Guy, Romain & Larédo, Catherine & Vergu, Elisabeta, 2014. "Parametric inference for discretely observed multidimensional diffusions with small diffusion coefficient," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 51-80.
    20. Kutoyants, Yu.A., 2017. "On the multi-step MLE-process for ergodic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2243-2261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mil:wpdepa:2011-37. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/damilit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEMM Working Papers The email address of this maintainer does not seem to be valid anymore. Please ask DEMM Working Papers to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/damilit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.