IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Some New Statistics for Testing Hypotheses in Parametric Models,

Listed author(s):
  • Morales, D.
  • Pardo, L.
  • Vajda, I.
Registered author(s):

    The paper deals with simple and composite hypotheses in statistical models with i.i.d. observations and with arbitrary families dominated by[sigma]-finite measures and parametrized by vector-valued variables. It introduces[phi]-divergence testing statistics as alternatives to the classical ones: the generalized likelihood ratio and the statistics of Wald and Rao. It is shown that, under the assumptions of standard type about hypotheses and model densities, the results about asymptotic distribution of the classical statistics established so far for the counting and Lebesgue dominating measures (discrete and continuous models) remain true also in the general case. Further, these results are extended to the[phi]-divergence statistics with smooth convex functions[phi]. The choice of[phi]-divergence statistics optimal from the point of view of power is discussed and illustrated by several examples.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 62 (1997)
    Issue (Month): 1 (July)
    Pages: 137-168

    in new window

    Handle: RePEc:eee:jmvana:v:62:y:1997:i:1:p:137-168
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Menendez, M. & Morales, D. & Pardo, L. & Vajda, I., 1995. "Divergence-Based Estimation and Testing of Statistical Models of Classification," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 329-354, August.
    2. Salicru, M. & Morales, D. & Menendez, M. L. & Pardo, L., 1994. "On the Applications of Divergence Type Measures in Testing Statistical Hypotheses," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 372-391, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:62:y:1997:i:1:p:137-168. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.