IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i8p1276-d393901.html
   My bibliography  Save this article

The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data

Author

Listed:
  • Ahmed Z. Afify

    (Department of Statistics, Mathematics and Insurance, Benha University, Benha 13511, Egypt)

  • Ahmed M. Gemeay

    (Department of Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt)

  • Noor Akma Ibrahim

    (Institute for Mathematical Research, Universiti Putra Malaysia, Selangor 43400, Malaysia)

Abstract

Modeling insurance data using heavy-tailed distributions is of great interest for actuaries. Probability distributions present a description of risk exposure, where the level of exposure to the risk can be determined by “key risk indicators” that usually are functions of the model. Actuaries and risk managers often use such key risk indicators to determine the degree to which their companies are subject to particular aspects of risk, which arise from changes in underlying variables such as prices of equity, interest rates, or exchange rates. The present study proposes a new heavy-tailed exponential distribution that accommodates bathtub, upside-down bathtub, decreasing, decreasing-constant, and increasing hazard rates. Actuarial measures including value at risk, tail value at risk, tail variance, and tail variance premium are derived. A computational study for these actuarial measures is conducted, proving that the proposed distribution has a heavier tail as compared with the alpha power exponential, exponentiated exponential, and exponential distributions. We adopt six estimation approaches for estimating its parameters, and assess the performance of these estimators via Monte Carlo simulations. Finally, an actuarial real data set is analyzed, proving that the proposed model can be used effectively to model insurance data as compared with fifteen competing distributions.

Suggested Citation

  • Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1276-:d:393901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/8/1276/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/8/1276/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Morales, D. & Pardo, L. & Vajda, I., 1997. "Some New Statistics for Testing Hypotheses in Parametric Models, ," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 137-168, July.
    2. Philippe Artzner, 1999. "Application of Coherent Risk Measures to Capital Requirements in Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 11-25.
    3. Abbas Mahdavi & Debasis Kundu, 2017. "A new method for generating distributions with an application to exponential distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(13), pages 6543-6557, July.
    4. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    5. Lane, Morton N., 2000. "Pricing Risk Transfer Transactions1," ASTIN Bulletin, Cambridge University Press, vol. 30(2), pages 259-293, November.
    6. Antonio Punzo & Angelo Mazza & Antonello Maruotti, 2018. "Fitting insurance and economic data with outliers: a flexible approach based on finite mixtures of contaminated gamma distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(14), pages 2563-2584, October.
    7. Luis Gustavo Bastos Pinho & Gauss Moutinho Cordeiro & Juvêncio Santos Nobre, 2015. "The Harris Extended Exponential Distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(16), pages 3486-3502, August.
    8. Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
    9. Beirlant, J. & Matthys, G. & Dierckx, G., 2001. "Heavy-Tailed Distributions and Rating," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 37-58, May.
    10. Resnick, Sidney I., 1997. "Discussion of the Danish Data on Large Fire Insurance Losses," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 139-151, May.
    11. Landsman, Zinoviy, 2010. "On the Tail Mean-Variance optimal portfolio selection," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 547-553, June.
    12. Luca Bagnato & Antonio Punzo, 2013. "Finite mixtures of unimodal beta and gamma densities and the $$k$$ -bumps algorithm," Computational Statistics, Springer, vol. 28(4), pages 1571-1597, August.
    13. M. Jones, 2004. "Families of distributions arising from distributions of order statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 1-43, June.
    14. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2012. "Skew mixture models for loss distributions: A Bayesian approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 617-623.
    15. Christopher Adcock & Martin Eling & Nicola Loperfido, 2015. "Skewed distributions in finance and actuarial science: a review," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1253-1281, November.
    16. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    17. Antonio Punzo, 2019. "A new look at the inverse Gaussian distribution with applications to insurance and economic data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(7), pages 1260-1287, May.
    18. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    19. Zohdy M. Nofal & Ahmed Z. Afify & Haitham M. Yousof & Gauss M. Cordeiro, 2017. "The generalized transmuted-G family of distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(8), pages 4119-4136, April.
    20. Abu Bakar, S.A. & Hamzah, N.A. & Maghsoudi, M. & Nadarajah, S., 2015. "Modeling loss data using composite models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 146-154.
    21. Kabir Dutta & Jason Perry, 2006. "A tale of tails: an empirical analysis of loss distribution models for estimating operational risk capital," Working Papers 06-13, Federal Reserve Bank of Boston.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mashail M. AL Sobhi, 2020. "The Inverse-Power Logistic-Exponential Distribution: Properties, Estimation Methods, and Application to Insurance Data," Mathematics, MDPI, vol. 8(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    2. Wei Zhao & Saima K Khosa & Zubair Ahmad & Muhammad Aslam & Ahmed Z Afify, 2020. "Type-I heavy tailed family with applications in medicine, engineering and insurance," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
    3. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
    4. Nada M. Alfaer & Ahmed M. Gemeay & Hassan M. Aljohani & Ahmed Z. Afify, 2021. "The Extended Log-Logistic Distribution: Inference and Actuarial Applications," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    5. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.
    6. Johan René van Dorp & Ekundayo Shittu, 2024. "Two-sided distributions with applications in insurance loss modeling," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 827-861, July.
    7. Mohamed Ibrahim & Walid Emam & Yusra Tashkandy & M. Masoom Ali & Haitham M. Yousof, 2023. "Bayesian and Non-Bayesian Risk Analysis and Assessment under Left-Skewed Insurance Data and a Novel Compound Reciprocal Rayleigh Extension," Mathematics, MDPI, vol. 11(7), pages 1-26, March.
    8. Ignatieva, Katja & Landsman, Zinoviy, 2019. "Conditional tail risk measures for the skewed generalised hyperbolic family," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 98-114.
    9. Alexeev Vitali & Ignatieva Katja & Liyanage Thusitha, 2021. "Dependence Modelling in Insurance via Copulas with Skewed Generalised Hyperbolic Marginals," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
    10. Li, Zhengxiao & Wang, Fei & Zhao, Zhengtang, 2024. "A new class of composite GBII regression models with varying threshold for modeling heavy-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 45-66.
    11. Naderi, Mehrdad & Hashemi, Farzane & Bekker, Andriette & Jamalizadeh, Ahad, 2020. "Modeling right-skewed financial data streams: A likelihood inference based on the generalized Birnbaum–Saunders mixture model," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    12. Haitham M. Yousof & Yusra Tashkandy & Walid Emam & M. Masoom Ali & Mohamed Ibrahim, 2023. "A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    13. Eling, Martin & Loperfido, Nicola, 2017. "Data breaches: Goodness of fit, pricing, and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 126-136.
    14. Maha A. D. Aldahlan & Ahmed Z. Afify, 2020. "The Odd Exponentiated Half-Logistic Exponential Distribution: Estimation Methods and Application to Engineering Data," Mathematics, MDPI, vol. 8(10), pages 1-26, October.
    15. Haitham M. Yousof & Walid Emam & Yusra Tashkandy & M. Masoom Ali & R. Minkah & Mohamed Ibrahim, 2023. "A Novel Model for Quantitative Risk Assessment under Claim-Size Data with Bimodal and Symmetric Data Modeling," Mathematics, MDPI, vol. 11(6), pages 1-31, March.
    16. Neveka M. Olmos & Emilio Gómez-Déniz & Osvaldo Venegas, 2022. "The Heavy-Tailed Gleser Model: Properties, Estimation, and Applications," Mathematics, MDPI, vol. 10(23), pages 1-16, December.
    17. Mashail M. AL Sobhi, 2020. "The Inverse-Power Logistic-Exponential Distribution: Properties, Estimation Methods, and Application to Insurance Data," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    18. Ignatieva, Katja & Landsman, Zinoviy, 2021. "A class of generalised hyper-elliptical distributions and their applications in computing conditional tail risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 437-465.
    19. Nicola Loperfido & Tomer Shushi, 2023. "Optimal Portfolio Projections for Skew-Elliptically Distributed Portfolio Returns," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 143-166, October.
    20. Semhar Michael & Tatjana Miljkovic & Volodymyr Melnykov, 2020. "Mixture modeling of data with multiple partial right-censoring levels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 355-378, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1276-:d:393901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.