IDEAS home Printed from https://ideas.repec.org/a/spr/metron/v83y2025i2d10.1007_s40300-025-00288-9.html
   My bibliography  Save this article

A Bayesian approach for modeling heavy tailed insurance claim data based on the contaminated lognormal distribution

Author

Listed:
  • Mahsa Salajegheh

    (Ferdowsi University of Mashhad)

  • Mehdi Jabbari Nooghabi

    (Ferdowsi University of Mashhad)

  • Kheirolah Okhli

    (Ferdowsi University of Mashhad)

Abstract

Recently, analysis of the insurance claims data with outliers has achieved considerable attention for insurance industries. In this regard, this paper introduces a methodology based on the contaminated lognormal distribution as an appropriate platform for analyzing insurance data with some levels of heavy tailed points. The Bayesian approach for computing the parameter estimates and the insurance premium is studied. In order to investigate the performance of the proposed methodology, some simulation studies are conducted by implementing the Gibbs sampler. We demonstrate that the proposed model is an appropriate and preferred model for dealing with the data with and without heavy tailed points. Finally, two examples of real insurance claim data have been analyzed to illustrate how well the contaminated lognormal distribution with Bayesian parameter inference works. Also, this paper studies that the proposed model outperforms the other existing models in the literature.

Suggested Citation

  • Mahsa Salajegheh & Mehdi Jabbari Nooghabi & Kheirolah Okhli, 2025. "A Bayesian approach for modeling heavy tailed insurance claim data based on the contaminated lognormal distribution," METRON, Springer;Sapienza Università di Roma, vol. 83(2), pages 213-234, August.
  • Handle: RePEc:spr:metron:v:83:y:2025:i:2:d:10.1007_s40300-025-00288-9
    DOI: 10.1007/s40300-025-00288-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40300-025-00288-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40300-025-00288-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Tsanakas, A. & Desli, E., 2003. "Risk Measures and Theories of Choice," British Actuarial Journal, Cambridge University Press, vol. 9(4), pages 959-991, October.
    2. Okhli, Kheirolah & Jabbari Nooghabi, Mehdi, 2023. "On the three-component mixture of exponential distributions: A Bayesian framework to model data with multiple lower and upper outliers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 480-500.
    3. Heilpern, S., 2003. "A rank-dependent generalization of zero utility principle," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 67-73, August.
    4. Vytaras Brazauskas & Andreas Kleefeld, 2016. "Modeling Severity and Measuring Tail Risk of Norwegian Fire Claims," North American Actuarial Journal, Taylor & Francis Journals, vol. 20(1), pages 1-16, January.
    5. Lane, Morton N., 2000. "Pricing Risk Transfer Transactions1," ASTIN Bulletin, Cambridge University Press, vol. 30(2), pages 259-293, November.
    6. Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
    7. Okhli, Kheirolah & Jabbari Nooghabi, Mehdi, 2021. "On the contaminated exponential distribution: A theoretical Bayesian approach for modeling positive-valued insurance claim data with outliers," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    8. Burnecki, Krzysztof & Kukla, Grzegorz & Weron, Rafał, 2000. "Property insurance loss distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(1), pages 269-278.
    9. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    10. Johannes Voit, 2001. "The Growth Dynamics Of German Business Firms," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 149-162.
    11. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.
    12. F. Din-Houn Lau & Sebastian Krumscheid, 2022. "Plateau proposal distributions for adaptive component-wise multiple-try metropolis," METRON, Springer;Sapienza Università di Roma, vol. 80(3), pages 343-370, December.
    13. Jabed H. Tomal & Hafizur Rahman, 2021. "A Bayesian piecewise linear model for the detection of breakpoints in housing prices," METRON, Springer;Sapienza Università di Roma, vol. 79(3), pages 361-381, December.
    14. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    15. Abu Bakar, S.A. & Hamzah, N.A. & Maghsoudi, M. & Nadarajah, S., 2015. "Modeling loss data using composite models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 146-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2025. "Hidden semi-Markov models for rainfall-related insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 120(C), pages 91-106.
    2. Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017. "Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
    3. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
    4. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    5. Li, Zhengxiao & Wang, Fei & Zhao, Zhengtang, 2024. "A new class of composite GBII regression models with varying threshold for modeling heavy-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 45-66.
    6. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.
    7. Hassan M Aljohani & Sarah A Bandar & Hazem Al-Mofleh & Zubair Ahmad & M El-Morshedy & Ahmed Z Afify, 2022. "A new asymmetric extended family: Properties and estimation methods with actuarial applications," PLOS ONE, Public Library of Science, vol. 17(10), pages 1-31, October.
    8. Wei Zhao & Saima K Khosa & Zubair Ahmad & Muhammad Aslam & Ahmed Z Afify, 2020. "Type-I heavy tailed family with applications in medicine, engineering and insurance," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
    9. Johan René van Dorp & Ekundayo Shittu, 2024. "Two-sided distributions with applications in insurance loss modeling," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 827-861, July.
    10. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    11. Bae, Taehan & Miljkovic, Tatjana, 2024. "Loss modeling with the size-biased lognormal mixture and the entropy regularized EM algorithm," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 182-195.
    12. Ignatieva, Katja & Landsman, Zinoviy, 2019. "Conditional tail risk measures for the skewed generalised hyperbolic family," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 98-114.
    13. Semhar Michael & Tatjana Miljkovic & Volodymyr Melnykov, 2020. "Mixture modeling of data with multiple partial right-censoring levels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 355-378, June.
    14. Alexeev Vitali & Ignatieva Katja & Liyanage Thusitha, 2021. "Dependence Modelling in Insurance via Copulas with Skewed Generalised Hyperbolic Marginals," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
    15. Walena Anesu Marambakuyana & Sandile Charles Shongwe, 2024. "Composite and Mixture Distributions for Heavy-Tailed Data—An Application to Insurance Claims," Mathematics, MDPI, vol. 12(2), pages 1-23, January.
    16. Naderi, Mehrdad & Hashemi, Farzane & Bekker, Andriette & Jamalizadeh, Ahad, 2020. "Modeling right-skewed financial data streams: A likelihood inference based on the generalized Birnbaum–Saunders mixture model," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    17. Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
    18. Queensley C. Chukwudum, 2019. "Reinsurance Pricing of Large Motor Insurance Claims in Nigeria: An Extreme Value Analysis," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(4), pages 1-12, July.
    19. repec:ibn:ijspnl:v:8:y:2019:i:4:p:1 is not listed on IDEAS
    20. Shahid Mohammad & Kahadawala Cooray, 2025. "Parameter Reduction of Complex Distributions Using a Tuning Method with Applications to Actuarial Data," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 14(3), pages 1-42, October.
    21. Queensley C Chukwudum, 2018. "Reinsurance Pricing of Large Motor Insurance Claims in Nigeria: An Extreme Value Analysis," Working Papers hal-01855973, HAL.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:83:y:2025:i:2:d:10.1007_s40300-025-00288-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.