IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v120y2025icp91-106.html
   My bibliography  Save this article

Hidden semi-Markov models for rainfall-related insurance claims

Author

Listed:
  • Shi, Yue
  • Punzo, Antonio
  • Otneim, Håkon
  • Maruotti, Antonello

Abstract

We analyze the temporal structure of a novel insurance dataset about home insurance claims related to rainfall-induced damage in Norway and employ a hidden semi-Markov model (HSMM) to capture the non-Gaussian nature and temporal dynamics of these claims. By examining a broad range of candidate sojourn and emission distributions and assessing the goodness-of-fit and commonly used risk measures of the corresponding HSMM, we identify an appropriate model for effectively representing insurance losses caused by rainfall-related incidents. Our findings highlight the importance of considering the temporal aspects of weather-related insurance claims and demonstrate that the proposed HSMM adeptly captures this feature. Moreover, the model estimates reveal a concerning trend: the risks associated with heavy rain in the context of home insurance have exhibited an upward trajectory between 2004 and 2020, aligning with the evidence of a changing climate. This insight has significant implications for insurance companies, providing them with valuable information for accurate and robust modeling in the face of climate uncertainties. By shedding light on the evolving risks related to heavy rain and their impact on home insurance, our study offers essential insights for insurance companies to adapt their strategies and effectively manage these emerging challenges. It underscores the necessity of incorporating climate change considerations into insurance models and emphasizes the importance of continuously monitoring and reassessing risk levels associated with rainfall-induced damage. Ultimately, our research contributes to the broader understanding of climate risk in the insurance industry and supports the development of resilient and sustainable insurance practices.

Suggested Citation

  • Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2025. "Hidden semi-Markov models for rainfall-related insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 120(C), pages 91-106.
  • Handle: RePEc:eee:insuma:v:120:y:2025:i:c:p:91-106
    DOI: 10.1016/j.insmatheco.2024.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668724001136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2024.11.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiao Jiang & Tianxiang Shi, 2024. "Auto Insurance Pricing Using Telematics Data: Application of a Hidden Markov Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 28(4), pages 822-839, October.
    2. Bulla, Jan & Bulla, Ingo, 2006. "Stylized facts of financial time series and hidden semi-Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2192-2209, December.
    3. Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
    4. Liang Hong & Ryan Martin, 2018. "Dirichlet process mixture models for insurance loss data," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2018(6), pages 545-554, July.
    5. Salvatore D. Tomarchio & Paul D. McNicholas & Antonio Punzo, 2021. "Matrix Normal Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 556-575, October.
    6. de Jong,Piet & Heller,Gillian Z., 2008. "Generalized Linear Models for Insurance Data," Cambridge Books, Cambridge University Press, number 9780521879149, June.
    7. Eling, Martin, 2014. "Fitting asset returns to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 45-56.
    8. Lu, Yi & Zeng, Leilei, 2012. "A Nonhomogeneous Poisson Hidden Markov Model for Claim Counts," ASTIN Bulletin, Cambridge University Press, vol. 42(1), pages 181-202, May.
    9. O'Connell, Jared & Højsgaard, Søren, 2011. "Hidden Semi Markov Models for Multiple Observation Sequences: The mhsmm Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i04).
    10. Pigeon, Mathieu & Denuit, Michel, 2011. "Composite Lognormal-Pareto model with random threshold," LIDAM Reprints ISBA 2011020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Bernardi, Mauro, 2013. "Risk measures for skew normal mixtures," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1819-1824.
    12. Salvatore D. Tomarchio & Antonio Punzo, 2020. "Dichotomous unimodal compound models: application to the distribution of insurance losses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(13-15), pages 2328-2353, November.
    13. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    14. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2012. "Skew mixture models for loss distributions: A Bayesian approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 617-623.
    15. Ahn, Soohan & Kim, Joseph H.T. & Ramaswami, Vaidyanathan, 2012. "A new class of models for heavy tailed distributions in finance and insurance risk," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 43-52.
    16. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    17. Kahadawala Cooray & Chin-I Cheng, 2015. "Bayesian estimators of the lognormal–Pareto composite distribution," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2015(6), pages 500-515, August.
    18. Mazza, Angelo & Punzo, Antonio, 2014. "DBKGrad: An R Package for Mortality Rates Graduation by Discrete Beta Kernel Techniques," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 57(c02).
    19. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.
    20. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    21. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Erratum to: Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 55(4), pages 2069-2069, December.
    22. Mathieu Pigeon & Michel Denuit, 2011. "Composite Lognormal–Pareto model with random threshold," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2011(3), pages 177-192.
    23. Verbelen, Roel & Gong, Lan & Antonio, Katrien & Badescu, Andrei & Lin, Sheldon, 2015. "Fitting Mixtures Of Erlangs To Censored And Truncated Data Using The Em Algorithm," ASTIN Bulletin, Cambridge University Press, vol. 45(3), pages 729-758, September.
    24. Abu Bakar, S.A. & Hamzah, N.A. & Maghsoudi, M. & Nadarajah, S., 2015. "Modeling loss data using composite models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 146-154.
    25. Bignozzi, Valeria & Macci, Claudio & Petrella, Lea, 2018. "Large deviations for risk measures in finite mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 84-92.
    26. Volodymyr Melnykov & Xuwen Zhu, 2019. "Studying crime trends in the USA over the years 2000–2012," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 325-341, March.
    27. Hogg, Robert V. & Klugman, Stuart A., 1983. "On the estimation of long tailed skewed distributions with actuarial applications," Journal of Econometrics, Elsevier, vol. 23(1), pages 91-102, September.
    28. Vytaras Brazauskas & Andreas Kleefeld, 2016. "Modeling Severity and Measuring Tail Risk of Norwegian Fire Claims," North American Actuarial Journal, Taylor & Francis Journals, vol. 20(1), pages 1-16, January.
    29. Bulla, Jan, 2006. "Application of Hidden Markov Models and Hidden Semi-Markov Models to Financial Time Series," MPRA Paper 7675, University Library of Munich, Germany.
    30. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    31. Antonio Punzo & Angelo Mazza & Antonello Maruotti, 2018. "Fitting insurance and economic data with outliers: a flexible approach based on finite mixtures of contaminated gamma distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(14), pages 2563-2584, October.
    32. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2017. "Multiple risk measures for multivariate dynamic heavy–tailed models," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 1-32.
    33. Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
    34. Antonello Maruotti & Antonio Punzo & Luca Bagnato, 2019. "Hidden Markov and Semi-Markov Models with Multivariate Leptokurtic-Normal Components for Robust Modeling of Daily Returns Series," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 91-117.
    35. Boualem Djehiche & Björn Löfdahl, 2018. "A Hidden Markov Approach to Disability Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(1), pages 119-136, January.
    36. Jan Bulla & Andreas Berzel, 2008. "Computational issues in parameter estimation for stationary hidden Markov models," Computational Statistics, Springer, vol. 23(1), pages 1-18, January.
    37. Luca Bagnato & Antonio Punzo, 2013. "Finite mixtures of unimodal beta and gamma densities and the $$k$$ -bumps algorithm," Computational Statistics, Springer, vol. 28(4), pages 1571-1597, August.
    38. Vernic, Raluca, 2006. "Multivariate skew-normal distributions with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 413-426, April.
    39. Jeon, Yongho & Kim, Joseph H.T., 2013. "A gamma kernel density estimation for insurance loss data," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 569-579.
    40. Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.
    41. Christopher Adcock & Martin Eling & Nicola Loperfido, 2015. "Skewed distributions in finance and actuarial science: a review," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1253-1281, November.
    42. Tatjana Miljkovic & Daniel Fernández, 2018. "On Two Mixture-Based Clustering Approaches Used in Modeling an Insurance Portfolio," Risks, MDPI, vol. 6(2), pages 1-18, May.
    43. Furman, Edward, 2008. "On a multivariate gamma distribution," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2353-2360, October.
    44. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
    45. Chan, J.S.K. & Choy, S.T.B. & Makov, U.E. & Landsman, Z., 2018. "Modelling Insurance Losses Using Contaminated Generalised Beta Type-Ii Distribution," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 871-904, May.
    46. Iain L. MacDonald, 2014. "Numerical Maximisation of Likelihood: A Neglected Alternative to EM?," International Statistical Review, International Statistical Institute, vol. 82(2), pages 296-308, August.
    47. Melnykov, Volodymyr & Zhu, Xuwen, 2018. "On model-based clustering of skewed matrix data," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 181-194.
    48. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    49. Liang Hong & Ryan Martin, 2017. "A Flexible Bayesian Nonparametric Model for Predicting Future Insurance Claims," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(2), pages 228-241, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
    2. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.
    3. Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    4. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    5. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    6. Naderi, Mehrdad & Hashemi, Farzane & Bekker, Andriette & Jamalizadeh, Ahad, 2020. "Modeling right-skewed financial data streams: A likelihood inference based on the generalized Birnbaum–Saunders mixture model," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    7. Li, Zhengxiao & Wang, Fei & Zhao, Zhengtang, 2024. "A new class of composite GBII regression models with varying threshold for modeling heavy-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 45-66.
    8. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    9. Wei Zhao & Saima K Khosa & Zubair Ahmad & Muhammad Aslam & Ahmed Z Afify, 2020. "Type-I heavy tailed family with applications in medicine, engineering and insurance," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
    10. Bae, Taehan & Miljkovic, Tatjana, 2024. "Loss modeling with the size-biased lognormal mixture and the entropy regularized EM algorithm," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 182-195.
    11. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2017. "Multiple risk measures for multivariate dynamic heavy–tailed models," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 1-32.
    12. Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017. "Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
    13. Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.
    14. Punzo, Antonio & Bagnato, Luca, 2021. "Modeling the cryptocurrency return distribution via Laplace scale mixtures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    15. Eling, Martin & Loperfido, Nicola, 2017. "Data breaches: Goodness of fit, pricing, and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 126-136.
    16. Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
    17. Ignatieva, Katja & Landsman, Zinoviy, 2019. "Conditional tail risk measures for the skewed generalised hyperbolic family," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 98-114.
    18. Semhar Michael & Tatjana Miljkovic & Volodymyr Melnykov, 2020. "Mixture modeling of data with multiple partial right-censoring levels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 355-378, June.
    19. Blostein, Martin & Miljkovic, Tatjana, 2019. "On modeling left-truncated loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 35-46.
    20. Alexeev Vitali & Ignatieva Katja & Liyanage Thusitha, 2021. "Dependence Modelling in Insurance via Copulas with Skewed Generalised Hyperbolic Marginals," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.

    More about this item

    Keywords

    Mixtures; Non-Gaussian distributions; EM algorithm; Risk measures; Rainfall data;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:120:y:2025:i:c:p:91-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.