IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v80y2018icp84-92.html
   My bibliography  Save this article

Large deviations for risk measures in finite mixture models

Author

Listed:
  • Bignozzi, Valeria
  • Macci, Claudio
  • Petrella, Lea

Abstract

Due to their heterogeneity, insurance risks can be properly described as a mixture of different fixed models, where the weights assigned to each model may be estimated empirically from a sample of available data. If a risk measure is evaluated on the estimated mixture instead of the (unknown) true one, then it is important to investigate the committed error. In this paper we study the asymptotic behaviour of estimated risk measures, as the data sample size tends to infinity, in the fashion of large deviations. We obtain large deviation results by applying the contraction principle, and the rate functions are given by a suitable variational formula; explicit expressions are available for mixtures of two models. Finally, our results are applied to the most common risk measures, namely the quantiles, the Expected Shortfall and the shortfall risk measure.

Suggested Citation

  • Bignozzi, Valeria & Macci, Claudio & Petrella, Lea, 2018. "Large deviations for risk measures in finite mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 84-92.
  • Handle: RePEc:eee:insuma:v:80:y:2018:i:c:p:84-92
    DOI: 10.1016/j.insmatheco.2018.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766871730495X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johanna F. Ziegel, 2016. "Coherence And Elicitability," Mathematical Finance, Wiley Blackwell, vol. 26(4), pages 901-918, October.
    2. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
    3. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2017. "Multiple risk measures for multivariate dynamic heavy–tailed models," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 1-32.
    4. Pesaran, M. Hashem & Schleicher, Christoph & Zaffaroni, Paolo, 2009. "Model averaging in risk management with an application to futures markets," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 280-305, March.
    5. Fabio Bellini & Valeria Bignozzi, 2015. "On elicitable risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 725-733, May.
    6. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    7. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2012. "Skew mixture models for loss distributions: A Bayesian approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 617-623.
    8. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    9. Barrieu, Pauline & Scandolo, Giacomo, 2015. "Assessing financial model risk," European Journal of Operational Research, Elsevier, vol. 242(2), pages 546-556.
    10. Stefan Weber, 2006. "Distribution‐Invariant Risk Measures, Information, And Dynamic Consistency," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 419-441, April.
    11. Lee, David & Li, Wai Keung & Wong, Tony Siu Tung, 2012. "Modeling insurance claims via a mixture exponential model combined with peaks-over-threshold approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 538-550.
    12. Freddy Delbaen & Fabio Bellini & Valeria Bignozzi & Johanna F. Ziegel, 2016. "Risk measures with the CxLS property," Finance and Stochastics, Springer, vol. 20(2), pages 433-453, April.
    13. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeria Bignozzi & Claudio Macci & Lea Petrella, 2017. "Large deviations for risk measures in finite mixture models," Papers 1710.03252, arXiv.org, revised Feb 2018.
    2. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised Aug 2020.
    3. Xue Dong He & Xianhua Peng, 2017. "Surplus-Invariant, Law-Invariant, and Conic Acceptance Sets Must be the Sets Induced by Value-at-Risk," Papers 1707.05596, arXiv.org, revised Jan 2018.
    4. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    5. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498, arXiv.org, revised Feb 2017.
    6. Zhaolin Hu & Dali Zhang, 2018. "Utility‐based shortfall risk: Efficient computations via Monte Carlo," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 378-392, August.
    7. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    8. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    9. Liu, Peng & Wang, Ruodu & Wei, Linxiao, 2020. "Is the inf-convolution of law-invariant preferences law-invariant?," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 144-154.
    10. Kratz, Marie & Lok, Yen H. & McNeil, Alexander J., 2018. "Multinomial VaR backtests: A simple implicit approach to backtesting expected shortfall," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 393-407.
    11. Tadese, Mekonnen & Drapeau, Samuel, 2020. "Relative bound and asymptotic comparison of expectile with respect to expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 387-399.
    12. Tobias Fissler & Jana Hlavinová & Birgit Rudloff, 2021. "Elicitability and identifiability of set-valued measures of systemic risk," Finance and Stochastics, Springer, vol. 25(1), pages 133-165, January.
    13. Marcelo Brutti Righi & Fernanda Maria Muller & Marlon Ruoso Moresco, 2017. "On a robust risk measurement approach for capital determination errors minimization," Papers 1707.09829, arXiv.org, revised Oct 2020.
    14. Tobias Fissler & Johanna F. Ziegel, 2019. "Evaluating Range Value at Risk Forecasts," Papers 1902.04489, arXiv.org, revised Nov 2020.
    15. Valeria Bignozzi & Matteo Burzoni & Cosimo Munari, 2020. "Risk Measures Based on Benchmark Loss Distributions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 87(2), pages 437-475, June.
    16. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    17. Kratz, Marie & Lok, Y-H & McNeil, Alexander J., 2016. "Multinomial VaR Backtests: A simple implicit approach to backtesting expected shortfall," ESSEC Working Papers WP1617, ESSEC Research Center, ESSEC Business School.
    18. Pitera, Marcin & Schmidt, Thorsten, 2018. "Unbiased estimation of risk," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 133-145.
    19. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    20. George Tzagkarakis & Frantz Maurer, 2020. "An energy-based measure for long-run horizon risk quantification," Annals of Operations Research, Springer, vol. 289(2), pages 363-390, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:80:y:2018:i:c:p:84-92. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.